Trainer¶
Once you’ve organized your PyTorch code into a LightningModule
, the Trainer
automates everything else.
The Trainer
achieves the following:
You maintain control over all aspects via PyTorch code in your
LightningModule
.The trainer uses best practices embedded by contributors and users from top AI labs such as Facebook AI Research, NYU, MIT, Stanford, etc…
The trainer allows disabling any key part that you don’t want automated.
Basic use¶
This is the basic use of the trainer:
model = MyLightningModule()
trainer = Trainer()
trainer.fit(model, train_dataloader, val_dataloader)
Under the hood¶
The Lightning Trainer
does much more than just “training”. Under the hood, it handles all loop details for you, some examples include:
Automatically enabling/disabling grads
Running the training, validation and test dataloaders
Calling the Callbacks at the appropriate times
Putting batches and computations on the correct devices
Here’s the pseudocode for what the trainer does under the hood (showing the train loop only)
# put model in train mode
model.train()
torch.set_grad_enabled(True)
losses = []
for batch in train_dataloader:
# calls hooks like this one
on_train_batch_start()
# train step
loss = training_step(batch)
# clear gradients
optimizer.zero_grad()
# backward
loss.backward()
# update parameters
optimizer.step()
losses.append(loss)
Trainer in Python scripts¶
In Python scripts, it’s recommended you use a main function to call the Trainer.
from argparse import ArgumentParser
def main(hparams):
model = LightningModule()
trainer = Trainer(accelerator=hparams.accelerator, devices=hparams.devices)
trainer.fit(model)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--accelerator", default=None)
parser.add_argument("--devices", default=None)
args = parser.parse_args()
main(args)
So you can run it like so:
python main.py --accelerator 'gpu' --devices 2
Note
Pro-tip: You don’t need to define all flags manually. You can let the LightningCLI create the Trainer and model with arguments supplied from the CLI.
If you want to stop a training run early, you can press “Ctrl + C” on your keyboard.
The trainer will catch the KeyboardInterrupt
and attempt a graceful shutdown. The trainer object will also set
an attribute interrupted
to True
in such cases. If you have a callback which shuts down compute
resources, for example, you can conditionally run the shutdown logic for only uninterrupted runs by overriding lightning.pytorch.Callback.on_exception()
.
Validation¶
You can perform an evaluation epoch over the validation set, outside of the training loop,
using validate()
. This might be
useful if you want to collect new metrics from a model right at its initialization
or after it has already been trained.
trainer.validate(model=model, dataloaders=val_dataloaders)
Testing¶
Once you’re done training, feel free to run the test set! (Only right before publishing your paper or pushing to production)
trainer.test(dataloaders=test_dataloaders)
Reproducibility¶
To ensure full reproducibility from run to run you need to set seeds for pseudo-random generators,
and set deterministic
flag in Trainer
.
Example:
from lightning.pytorch import Trainer, seed_everything
seed_everything(42, workers=True)
# sets seeds for numpy, torch and python.random.
model = Model()
trainer = Trainer(deterministic=True)
By setting workers=True
in seed_everything()
, Lightning derives
unique seeds across all dataloader workers and processes for torch
, numpy
and stdlib
random
number generators. When turned on, it ensures that e.g. data augmentations are not repeated across workers.
Trainer flags¶
accelerator¶
Supports passing different accelerator types ("cpu", "gpu", "tpu", "ipu", "auto"
)
as well as custom accelerator instances.
# CPU accelerator
trainer = Trainer(accelerator="cpu")
# Training with GPU Accelerator using 2 GPUs
trainer = Trainer(devices=2, accelerator="gpu")
# Training with TPU Accelerator using 8 tpu cores
trainer = Trainer(devices=8, accelerator="tpu")
# Training with GPU Accelerator using the DistributedDataParallel strategy
trainer = Trainer(devices=4, accelerator="gpu", strategy="ddp")
Note
The "auto"
option recognizes the machine you are on, and selects the appropriate Accelerator
.
# If your machine has GPUs, it will use the GPU Accelerator for training
trainer = Trainer(devices=2, accelerator="auto")
You can also modify hardware behavior by subclassing an existing accelerator to adjust for your needs.
Example:
class MyOwnAcc(CPUAccelerator):
...
Trainer(accelerator=MyOwnAcc())
Note
If the devices
flag is not defined, it will assume devices
to be "auto"
and fetch the auto_device_count
from the accelerator.
# This is part of the built-in `CUDAAccelerator`
class CUDAAccelerator(Accelerator):
"""Accelerator for GPU devices."""
@staticmethod
def auto_device_count() -> int:
"""Get the devices when set to auto."""
return torch.cuda.device_count()
# Training with GPU Accelerator using total number of gpus available on the system
Trainer(accelerator="gpu")
accumulate_grad_batches¶
Accumulates gradients over k batches before stepping the optimizer.
# default used by the Trainer (no accumulation)
trainer = Trainer(accumulate_grad_batches=1)
Example:
# accumulate every 4 batches (effective batch size is batch*4)
trainer = Trainer(accumulate_grad_batches=4)
See also: Gradient Accumulation to enable more fine-grained accumulation schedules.
benchmark¶
The value (True
or False
) to set torch.backends.cudnn.benchmark
to. The value for
torch.backends.cudnn.benchmark
set in the current session will be used (False
if not manually set).
If deterministic
is set to True
, this will default to False
.
You can read more about the interaction of torch.backends.cudnn.benchmark
and torch.backends.cudnn.deterministic
here
Setting this flag to True
can increase the speed of your system if your input sizes don’t
change. However, if they do, then it might make your system slower. The CUDNN auto-tuner will try to find the best
algorithm for the hardware when a new input size is encountered. This might also increase the memory usage.
Read more about it here.
Example:
# Will use whatever the current value for torch.backends.cudnn.benchmark, normally False
trainer = Trainer(benchmark=None) # default
# you can overwrite the value
trainer = Trainer(benchmark=True)
deterministic¶
This flag sets the torch.backends.cudnn.deterministic
flag.
Might make your system slower, but ensures reproducibility.
For more info check PyTorch docs.
Example:
# default used by the Trainer
trainer = Trainer(deterministic=False)
callbacks¶
This argument can be used to add a Callback
or a list of them.
Callbacks run sequentially in the order defined here
with the exception of ModelCheckpoint
callbacks which run
after all others to ensure all states are saved to the checkpoints.
# single callback
trainer = Trainer(callbacks=PrintCallback())
# a list of callbacks
trainer = Trainer(callbacks=[PrintCallback()])
Example:
from lightning.pytorch.callbacks import Callback
class PrintCallback(Callback):
def on_train_start(self, trainer, pl_module):
print("Training is started!")
def on_train_end(self, trainer, pl_module):
print("Training is done.")
Model-specific callbacks can also be added inside the LightningModule
through
configure_callbacks()
.
Callbacks returned in this hook will extend the list initially given to the Trainer
argument, and replace
the trainer callbacks should there be two or more of the same type.
ModelCheckpoint
callbacks always run last.
check_val_every_n_epoch¶
Check val every n train epochs.
Example:
# default used by the Trainer
trainer = Trainer(check_val_every_n_epoch=1)
# run val loop every 10 training epochs
trainer = Trainer(check_val_every_n_epoch=10)
default_root_dir¶
Default path for logs and weights when no logger or
lightning.pytorch.callbacks.ModelCheckpoint
callback passed. On
certain clusters you might want to separate where logs and checkpoints are
stored. If you don’t then use this argument for convenience. Paths can be local
paths or remote paths such as s3://bucket/path
or hdfs://path/
. Credentials
will need to be set up to use remote filepaths.
# default used by the Trainer
trainer = Trainer(default_root_dir=os.getcwd())
devices¶
Number of devices to train on (int
), which devices to train on (list
or str
), or "auto"
.
# Training with CPU Accelerator using 2 processes
trainer = Trainer(devices=2, accelerator="cpu")
# Training with GPU Accelerator using GPUs 1 and 3
trainer = Trainer(devices=[1, 3], accelerator="gpu")
# Training with TPU Accelerator using 8 tpu cores
trainer = Trainer(devices=8, accelerator="tpu")
Tip
The "auto"
option recognizes the devices to train on, depending on the Accelerator
being used.
# Use whatever hardware your machine has available
trainer = Trainer(devices="auto", accelerator="auto")
# Training with CPU Accelerator using 1 process
trainer = Trainer(devices="auto", accelerator="cpu")
# Training with TPU Accelerator using 8 tpu cores
trainer = Trainer(devices="auto", accelerator="tpu")
# Training with IPU Accelerator using 4 ipus
trainer = Trainer(devices="auto", accelerator="ipu")
Note
If the devices
flag is not defined, it will assume devices
to be "auto"
and fetch the auto_device_count
from the accelerator.
# This is part of the built-in `CUDAAccelerator`
class CUDAAccelerator(Accelerator):
"""Accelerator for GPU devices."""
@staticmethod
def auto_device_count() -> int:
"""Get the devices when set to auto."""
return torch.cuda.device_count()
# Training with GPU Accelerator using total number of gpus available on the system
Trainer(accelerator="gpu")
enable_checkpointing¶
By default Lightning saves a checkpoint for you in your current working directory, with the state of your last training epoch, Checkpoints capture the exact value of all parameters used by a model. To disable automatic checkpointing, set this to False.
# default used by Trainer, saves the most recent model to a single checkpoint after each epoch
trainer = Trainer(enable_checkpointing=True)
# turn off automatic checkpointing
trainer = Trainer(enable_checkpointing=False)
You can override the default behavior by initializing the ModelCheckpoint
callback, and adding it to the callbacks
list.
See Saving and Loading Checkpoints for how to customize checkpointing.
from lightning.pytorch.callbacks import ModelCheckpoint
# Init ModelCheckpoint callback, monitoring 'val_loss'
checkpoint_callback = ModelCheckpoint(monitor="val_loss")
# Add your callback to the callbacks list
trainer = Trainer(callbacks=[checkpoint_callback])
fast_dev_run¶
Runs n if set to n
(int) else 1 if set to True
batch(es) to ensure your code will execute without errors. This
applies to fitting, validating, testing, and predicting. This flag is only recommended for debugging purposes and
should not be used to limit the number of batches to run.
# default used by the Trainer
trainer = Trainer(fast_dev_run=False)
# runs only 1 training and 1 validation batch and the program ends
trainer = Trainer(fast_dev_run=True)
trainer.fit(...)
# runs 7 predict batches and program ends
trainer = Trainer(fast_dev_run=7)
trainer.predict(...)
This argument is different from limit_{train,val,test,predict}_batches
because side effects are avoided to reduce the
impact to subsequent runs. These are the changes enabled:
Sets
Trainer(max_epochs=1)
.Sets
Trainer(max_steps=...)
to 1 or the number passed.Sets
Trainer(num_sanity_val_steps=0)
.Sets
Trainer(val_check_interval=1.0)
.Sets
Trainer(check_every_n_epoch=1)
.Disables all loggers.
Disables passing logged metrics to loggers.
The
ModelCheckpoint
callbacks will not trigger.The
EarlyStopping
callbacks will not trigger.Sets
limit_{train,val,test,predict}_batches
to 1 or the number passed.Disables the tuning callbacks (
BatchSizeFinder
,LearningRateFinder
).If using the CLI, the configuration file is not saved.
gradient_clip_val¶
Gradient clipping value
# default used by the Trainer
trainer = Trainer(gradient_clip_val=None)
limit_train_batches¶
How much of training dataset to check. Useful when debugging or testing something that happens at the end of an epoch.
# default used by the Trainer
trainer = Trainer(limit_train_batches=1.0)
Example:
# default used by the Trainer
trainer = Trainer(limit_train_batches=1.0)
# run through only 25% of the training set each epoch
trainer = Trainer(limit_train_batches=0.25)
# run through only 10 batches of the training set each epoch
trainer = Trainer(limit_train_batches=10)
limit_test_batches¶
How much of test dataset to check.
# default used by the Trainer
trainer = Trainer(limit_test_batches=1.0)
# run through only 25% of the test set each epoch
trainer = Trainer(limit_test_batches=0.25)
# run for only 10 batches
trainer = Trainer(limit_test_batches=10)
In the case of multiple test dataloaders, the limit applies to each dataloader individually.
limit_val_batches¶
How much of validation dataset to check. Useful when debugging or testing something that happens at the end of an epoch.
# default used by the Trainer
trainer = Trainer(limit_val_batches=1.0)
# run through only 25% of the validation set each epoch
trainer = Trainer(limit_val_batches=0.25)
# run for only 10 batches
trainer = Trainer(limit_val_batches=10)
# disable validation
trainer = Trainer(limit_val_batches=0)
In the case of multiple validation dataloaders, the limit applies to each dataloader individually.
log_every_n_steps¶
How often to add logging rows (does not write to disk)
# default used by the Trainer
trainer = Trainer(log_every_n_steps=50)
- See Also:
logger¶
Logger (or iterable collection of loggers) for experiment tracking. A True
value uses the default TensorBoardLogger
shown below. False
will disable logging.
from lightning.pytorch.loggers import TensorBoardLogger
# default logger used by trainer (if tensorboard is installed)
logger = TensorBoardLogger(save_dir=os.getcwd(), version=1, name="lightning_logs")
Trainer(logger=logger)
max_epochs¶
Stop training once this number of epochs is reached
# default used by the Trainer
trainer = Trainer(max_epochs=1000)
If both max_epochs
and max_steps
aren’t specified, max_epochs
will default to 1000
.
To enable infinite training, set max_epochs = -1
.
min_epochs¶
Force training for at least these many epochs
# default used by the Trainer
trainer = Trainer(min_epochs=1)
max_steps¶
Stop training after this number of global steps. Training will stop if max_steps or max_epochs have reached (earliest).
# Default (disabled)
trainer = Trainer(max_steps=-1)
# Stop after 100 steps
trainer = Trainer(max_steps=100)
If max_steps
is not specified, max_epochs
will be used instead (and max_epochs
defaults to
1000
if max_epochs
is not specified). To disable this default, set max_steps = -1
.
min_steps¶
Force training for at least this number of global steps. Trainer will train model for at least min_steps or min_epochs (latest).
# Default (disabled)
trainer = Trainer(min_steps=None)
# Run at least for 100 steps (disable min_epochs)
trainer = Trainer(min_steps=100, min_epochs=0)
max_time¶
Set the maximum amount of time for training. Training will get interrupted mid-epoch.
For customizable options use the Timer
callback.
# Default (disabled)
trainer = Trainer(max_time=None)
# Stop after 12 hours of training or when reaching 10 epochs (string)
trainer = Trainer(max_time="00:12:00:00", max_epochs=10)
# Stop after 1 day and 5 hours (dict)
trainer = Trainer(max_time={"days": 1, "hours": 5})
In case max_time
is used together with min_steps
or min_epochs
, the min_*
requirement
always has precedence.
num_nodes¶
Number of GPU nodes for distributed training.
# default used by the Trainer
trainer = Trainer(num_nodes=1)
# to train on 8 nodes
trainer = Trainer(num_nodes=8)
num_sanity_val_steps¶
Sanity check runs n batches of val before starting the training routine. This catches any bugs in your validation without having to wait for the first validation check. The Trainer uses 2 steps by default. Turn it off or modify it here.
# default used by the Trainer
trainer = Trainer(num_sanity_val_steps=2)
# turn it off
trainer = Trainer(num_sanity_val_steps=0)
# check all validation data
trainer = Trainer(num_sanity_val_steps=-1)
This option will reset the validation dataloader unless num_sanity_val_steps=0
.
overfit_batches¶
Uses this much data of the training & validation set.
If the training & validation dataloaders have shuffle=True
, Lightning will automatically disable it.
Useful for quickly debugging or trying to overfit on purpose.
# default used by the Trainer
trainer = Trainer(overfit_batches=0.0)
# use only 1% of the train & val set
trainer = Trainer(overfit_batches=0.01)
# overfit on 10 of the same batches
trainer = Trainer(overfit_batches=10)
plugins¶
Plugins allow you to connect arbitrary backends, precision libraries, clusters etc. For example:
To define your own behavior, subclass the relevant class and pass it in. Here’s an example linking up your own
ClusterEnvironment
.
from lightning.pytorch.plugins.environments import ClusterEnvironment
class MyCluster(ClusterEnvironment):
def main_address(self):
return your_main_address
def main_port(self):
return your_main_port
def world_size(self):
return the_world_size
trainer = Trainer(plugins=[MyCluster()], ...)
precision¶
Lightning supports either double (64), float (32), bfloat16 (bf16), or half (16) precision training.
Half precision, or mixed precision, is the combined use of 32 and 16 bit floating points to reduce memory footprint during model training. This can result in improved performance, achieving +3X speedups on modern GPUs.
# default used by the Trainer
trainer = Trainer(precision=32)
# 16-bit precision
trainer = Trainer(precision="16-mixed", accelerator="gpu", devices=1) # works only on CUDA
# bfloat16 precision
trainer = Trainer(precision="bf16-mixed")
# 64-bit precision
trainer = Trainer(precision=64)
Note
When running on TPUs, torch.bfloat16 will be used but tensor printing will still show torch.float32.
profiler¶
To profile individual steps during training and assist in identifying bottlenecks.
See the profiler documentation. for more details.
from lightning.pytorch.profilers import SimpleProfiler, AdvancedProfiler
# default used by the Trainer
trainer = Trainer(profiler=None)
# to profile standard training events, equivalent to `profiler=SimpleProfiler()`
trainer = Trainer(profiler="simple")
# advanced profiler for function-level stats, equivalent to `profiler=AdvancedProfiler()`
trainer = Trainer(profiler="advanced")
enable_progress_bar¶
Whether to enable or disable the progress bar. Defaults to True.
# default used by the Trainer
trainer = Trainer(enable_progress_bar=True)
# disable progress bar
trainer = Trainer(enable_progress_bar=False)
reload_dataloaders_every_n_epochs¶
Set to a positive integer to reload dataloaders every n epochs from your currently used data source.
DataSource can be a LightningModule
or a LightningDataModule
.
# if 0 (default)
train_loader = model.train_dataloader()
# or if using data module: datamodule.train_dataloader()
for epoch in epochs:
for batch in train_loader:
...
# if a positive integer
for epoch in epochs:
if not epoch % reload_dataloaders_every_n_epochs:
train_loader = model.train_dataloader()
# or if using data module: datamodule.train_dataloader()
for batch in train_loader:
...
The pseudocode applies also to the val_dataloader
.
use_distributed_sampler¶
See lightning.pytorch.trainer.Trainer.params.use_distributed_sampler
.
# default used by the Trainer
trainer = Trainer(use_distributed_sampler=True)
By setting to False, you have to add your own distributed sampler:
# in your LightningModule or LightningDataModule
def train_dataloader(self):
dataset = ...
# default used by the Trainer
sampler = torch.utils.data.DistributedSampler(dataset, shuffle=True)
dataloader = DataLoader(dataset, batch_size=32, sampler=sampler)
return dataloader
strategy¶
Supports passing different training strategies with aliases (ddp, fsdp, etc) as well as configured strategies.
# Data-parallel training with the DDP strategy on 4 GPUs
trainer = Trainer(strategy="ddp", accelerator="gpu", devices=4)
# Model-parallel training with the FSDP strategy on 4 GPUs
trainer = Trainer(strategy="fsdp", accelerator="gpu", devices=4)
Additionally, you can pass a strategy object.
from lightning.pytorch.strategies import DDPStrategy
trainer = Trainer(strategy=DDPStrategy(static_graph=True), accelerator="gpu", devices=2)
sync_batchnorm¶
Enable synchronization between batchnorm layers across all GPUs.
trainer = Trainer(sync_batchnorm=True)
val_check_interval¶
How often within one training epoch to check the validation set. Can specify as float or int.
pass a
float
in the range [0.0, 1.0] to check after a fraction of the training epoch.pass an
int
to check after a fixed number of training batches. Anint
value can only be higher than the number of training batches whencheck_val_every_n_epoch=None
, which validates after everyN
training batches across epochs or iteration-based training.
# default used by the Trainer
trainer = Trainer(val_check_interval=1.0)
# check validation set 4 times during a training epoch
trainer = Trainer(val_check_interval=0.25)
# check validation set every 1000 training batches in the current epoch
trainer = Trainer(val_check_interval=1000)
# check validation set every 1000 training batches across complete epochs or during iteration-based training
# use this when using iterableDataset and your dataset has no length
# (ie: production cases with streaming data)
trainer = Trainer(val_check_interval=1000, check_val_every_n_epoch=None)
# Here is the computation to estimate the total number of batches seen within an epoch.
# Find the total number of train batches
total_train_batches = total_train_samples // (train_batch_size * world_size)
# Compute how many times we will call validation during the training loop
val_check_batch = max(1, int(total_train_batches * val_check_interval))
val_checks_per_epoch = total_train_batches / val_check_batch
# Find the total number of validation batches
total_val_batches = total_val_samples // (val_batch_size * world_size)
# Total number of batches run
total_fit_batches = total_train_batches + total_val_batches
enable_model_summary¶
Whether to enable or disable the model summarization. Defaults to True.
# default used by the Trainer
trainer = Trainer(enable_model_summary=True)
# disable summarization
trainer = Trainer(enable_model_summary=False)
# enable custom summarization
from lightning.pytorch.callbacks import ModelSummary
trainer = Trainer(enable_model_summary=True, callbacks=[ModelSummary(max_depth=-1)])
inference_mode¶
Whether to use torch.inference_mode()
or torch.no_grad()
mode during evaluation
(validate
/test
/predict
)
# default used by the Trainer
trainer = Trainer(inference_mode=True)
# Use `torch.no_grad` instead
trainer = Trainer(inference_mode=False)
With torch.inference_mode()
disabled, you can enable the grad of your model layers if required.
class LitModel(LightningModule):
def validation_step(self, batch, batch_idx):
preds = self.layer1(batch)
with torch.enable_grad():
grad_preds = preds.requires_grad_()
preds2 = self.layer2(grad_preds)
model = LitModel()
trainer = Trainer(inference_mode=False)
trainer.validate(model)
Trainer class API¶
Methods¶
init¶
- Trainer.__init__(*, accelerator='auto', strategy='auto', devices='auto', num_nodes=1, precision='32-true', logger=None, callbacks=None, fast_dev_run=False, max_epochs=None, min_epochs=None, max_steps=- 1, min_steps=None, max_time=None, limit_train_batches=None, limit_val_batches=None, limit_test_batches=None, limit_predict_batches=None, overfit_batches=0.0, val_check_interval=None, check_val_every_n_epoch=1, num_sanity_val_steps=None, log_every_n_steps=None, enable_checkpointing=None, enable_progress_bar=None, enable_model_summary=None, accumulate_grad_batches=1, gradient_clip_val=None, gradient_clip_algorithm=None, deterministic=None, benchmark=None, inference_mode=True, use_distributed_sampler=True, profiler=None, detect_anomaly=False, barebones=False, plugins=None, sync_batchnorm=False, reload_dataloaders_every_n_epochs=0, default_root_dir=None)[source]
Customize every aspect of training via flags.
- Parameters
accelerator¶ (
Union
[str
,Accelerator
]) – Supports passing different accelerator types (“cpu”, “gpu”, “tpu”, “ipu”, “hpu”, “mps”, “auto”) as well as custom accelerator instances.strategy¶ (
Union
[str
,Strategy
]) – Supports different training strategies with aliases as well custom strategies. Default:"auto"
.devices¶ (
Union
[List
[int
],str
,int
]) – The devices to use. Can be set to a positive number (int or str), a sequence of device indices (list or str), the value-1
to indicate all available devices should be used, or"auto"
for automatic selection based on the chosen accelerator. Default:"auto"
.num_nodes¶ (
int
) – Number of GPU nodes for distributed training. Default:1
.precision¶ (
Union
[Literal
[64, 32, 16],Literal
[‘16-mixed’, ‘bf16-mixed’, ‘32-true’, ‘64-true’],Literal
[‘64’, ‘32’, ‘16’, ‘bf16’]]) – Double precision (64, ‘64’ or ‘64-true’), full precision (32, ‘32’ or ‘32-true’), 16bit mixed precision (16, ‘16’, ‘16-mixed’) or bfloat16 mixed precision (‘bf16’, ‘bf16-mixed’). Can be used on CPU, GPU, TPUs, HPUs or IPUs. Default:'32-true'
.logger¶ (
Union
[Logger
,Iterable
[Logger
],bool
,None
]) – Logger (or iterable collection of loggers) for experiment tracking. ATrue
value uses the defaultTensorBoardLogger
if it is installed, otherwiseCSVLogger
.False
will disable logging. If multiple loggers are provided, local files (checkpoints, profiler traces, etc.) are saved in thelog_dir
of he first logger. Default:True
.callbacks¶ (
Union
[List
[Callback
],Callback
,None
]) – Add a callback or list of callbacks. Default:None
.fast_dev_run¶ (
Union
[int
,bool
]) – Runs n if set ton
(int) else 1 if set toTrue
batch(es) of train, val and test to find any bugs (ie: a sort of unit test). Default:False
.max_epochs¶ (
Optional
[int
]) – Stop training once this number of epochs is reached. Disabled by default (None). If both max_epochs and max_steps are not specified, defaults tomax_epochs = 1000
. To enable infinite training, setmax_epochs = -1
.min_epochs¶ (
Optional
[int
]) – Force training for at least these many epochs. Disabled by default (None).max_steps¶ (
int
) – Stop training after this number of steps. Disabled by default (-1). Ifmax_steps = -1
andmax_epochs = None
, will default tomax_epochs = 1000
. To enable infinite training, setmax_epochs
to-1
.min_steps¶ (
Optional
[int
]) – Force training for at least these number of steps. Disabled by default (None
).max_time¶ (
Union
[str
,timedelta
,Dict
[str
,int
],None
]) – Stop training after this amount of time has passed. Disabled by default (None
). The time duration can be specified in the format DD:HH:MM:SS (days, hours, minutes seconds), as adatetime.timedelta
, or a dictionary with keys that will be passed todatetime.timedelta
.limit_train_batches¶ (
Union
[int
,float
,None
]) – How much of training dataset to check (float = fraction, int = num_batches). Default:1.0
.limit_val_batches¶ (
Union
[int
,float
,None
]) – How much of validation dataset to check (float = fraction, int = num_batches). Default:1.0
.limit_test_batches¶ (
Union
[int
,float
,None
]) – How much of test dataset to check (float = fraction, int = num_batches). Default:1.0
.limit_predict_batches¶ (
Union
[int
,float
,None
]) – How much of prediction dataset to check (float = fraction, int = num_batches). Default:1.0
.overfit_batches¶ (
Union
[int
,float
]) – Overfit a fraction of training/validation data (float) or a set number of batches (int). Default:0.0
.val_check_interval¶ (
Union
[int
,float
,None
]) – How often to check the validation set. Pass afloat
in the range [0.0, 1.0] to check after a fraction of the training epoch. Pass anint
to check after a fixed number of training batches. Anint
value can only be higher than the number of training batches whencheck_val_every_n_epoch=None
, which validates after everyN
training batches across epochs or during iteration-based training. Default:1.0
.check_val_every_n_epoch¶ (
Optional
[int
]) – Perform a validation loop every after every N training epochs. IfNone
, validation will be done solely based on the number of training batches, requiringval_check_interval
to be an integer value. Default:1
.num_sanity_val_steps¶ (
Optional
[int
]) – Sanity check runs n validation batches before starting the training routine. Set it to -1 to run all batches in all validation dataloaders. Default:2
.log_every_n_steps¶ (
Optional
[int
]) – How often to log within steps. Default:50
.enable_checkpointing¶ (
Optional
[bool
]) – IfTrue
, enable checkpointing. It will configure a default ModelCheckpoint callback if there is no user-defined ModelCheckpoint incallbacks
. Default:True
.enable_progress_bar¶ (
Optional
[bool
]) – Whether to enable to progress bar by default. Default:True
.enable_model_summary¶ (
Optional
[bool
]) – Whether to enable model summarization by default. Default:True
.accumulate_grad_batches¶ (
int
) – Accumulates gradients over k batches before stepping the optimizer. Default: 1.gradient_clip_val¶ (
Union
[int
,float
,None
]) – The value at which to clip gradients. Passinggradient_clip_val=None
disables gradient clipping. If using Automatic Mixed Precision (AMP), the gradients will be unscaled before. Default:None
.gradient_clip_algorithm¶ (
Optional
[str
]) – The gradient clipping algorithm to use. Passgradient_clip_algorithm="value"
to clip by value, andgradient_clip_algorithm="norm"
to clip by norm. By default it will be set to"norm"
.deterministic¶ (
Union
[bool
,Literal
[‘warn’],None
]) – IfTrue
, sets whether PyTorch operations must use deterministic algorithms. Set to"warn"
to use deterministic algorithms whenever possible, throwing warnings on operations that don’t support deterministic mode (requires PyTorch 1.11+). If not set, defaults toFalse
. Default:None
.benchmark¶ (
Optional
[bool
]) – The value (True
orFalse
) to settorch.backends.cudnn.benchmark
to. The value fortorch.backends.cudnn.benchmark
set in the current session will be used (False
if not manually set). Ifdeterministic
is set toTrue
, this will default toFalse
. Override to manually set a different value. Default:None
.inference_mode¶ (
bool
) – Whether to usetorch.inference_mode()
ortorch.no_grad()
during evaluation (validate
/test
/predict
).use_distributed_sampler¶ (
bool
) – Whether to wrap the DataLoader’s sampler withtorch.utils.data.DistributedSampler
. If not specified this is toggled automatically for strategies that require it. By default, it will addshuffle=True
for the train sampler andshuffle=False
for validation/test/predict samplers. If you want to disable this logic, you can passFalse
and add your own distributed sampler in the dataloader hooks. IfTrue
and a distributed sampler was already added, Lightning will not replace the existing one. For iterable-style datasets, we don’t do this automatically.profiler¶ (
Union
[Profiler
,str
,None
]) – To profile individual steps during training and assist in identifying bottlenecks. Default:None
.detect_anomaly¶ (
bool
) – Enable anomaly detection for the autograd engine. Default:False
.barebones¶ (
bool
) – Whether to run in “barebones mode”, where all features that may impact raw speed are disabled. This is meant for analyzing the Trainer overhead and is discouraged during regular training runs. The following features are deactivated:enable_checkpointing
,logger
,enable_progress_bar
,log_every_n_steps
,enable_model_summary
,num_sanity_val_steps
,fast_dev_run
,detect_anomaly
,profiler
,log()
,log_dict()
.plugins¶ (
Union
[PrecisionPlugin
,ClusterEnvironment
,CheckpointIO
,LayerSync
,str
,List
[Union
[PrecisionPlugin
,ClusterEnvironment
,CheckpointIO
,LayerSync
,str
]],None
]) – Plugins allow modification of core behavior like ddp and amp, and enable custom lightning plugins. Default:None
.sync_batchnorm¶ (
bool
) – Synchronize batch norm layers between process groups/whole world. Default:False
.reload_dataloaders_every_n_epochs¶ (
int
) – Set to a non-negative integer to reload dataloaders every n epochs. Default:0
.default_root_dir¶ (
Union
[str
,Path
,None
]) – Default path for logs and weights when no logger/ckpt_callback passed. Default:os.getcwd()
. Can be remote file paths such as s3://mybucket/path or ‘hdfs://path/’
fit¶
- Trainer.fit(model, train_dataloaders=None, val_dataloaders=None, datamodule=None, ckpt_path=None)[source]
Runs the full optimization routine.
- Parameters
model¶ (
LightningModule
) – Model to fit.train_dataloaders¶ (
Union
[Any
,LightningDataModule
,None
]) – An iterable or collection of iterables specifying training samples. Alternatively, aLightningDataModule
that defines the :class:`~lightning.pytorch.core.hooks.DataHooks.train_dataloader hook.val_dataloaders¶ (
Optional
[Any
]) – An iterable or collection of iterables specifying validation samples.ckpt_path¶ (
Optional
[str
]) – Path/URL of the checkpoint from which training is resumed. Could also be one of two special keywords"last"
and"hpc"
. If there is no checkpoint file at the path, an exception is raised. If resuming from mid-epoch checkpoint, training will start from the beginning of the next epoch.datamodule¶ (
Optional
[LightningDataModule
]) – ALightningDataModule
that defines the :class:`~lightning.pytorch.core.hooks.DataHooks.train_dataloader hook.
For more information about multiple dataloaders, see this section.
- Return type
validate¶
- Trainer.validate(model=None, dataloaders=None, ckpt_path=None, verbose=True, datamodule=None)[source]
Perform one evaluation epoch over the validation set.
- Parameters
model¶ (
Optional
[LightningModule
]) – The model to validate.dataloaders¶ (
Union
[Any
,LightningDataModule
,None
]) – An iterable or collection of iterables specifying validation samples. Alternatively, aLightningDataModule
that defines the :class:`~lightning.pytorch.core.hooks.DataHooks.val_dataloader hook.ckpt_path¶ (
Optional
[str
]) – Either"best"
,"last"
,"hpc"
or path to the checkpoint you wish to validate. IfNone
and the model instance was passed, use the current weights. Otherwise, the best model checkpoint from the previoustrainer.fit
call will be loaded if a checkpoint callback is configured.datamodule¶ (
Optional
[LightningDataModule
]) – ALightningDataModule
that defines the :class:`~lightning.pytorch.core.hooks.DataHooks.val_dataloader hook.
For more information about multiple dataloaders, see this section.
test¶
- Trainer.test(model=None, dataloaders=None, ckpt_path=None, verbose=True, datamodule=None)[source]
Perform one evaluation epoch over the test set. It’s separated from fit to make sure you never run on your test set until you want to.
- Parameters
model¶ (
Optional
[LightningModule
]) – The model to test.dataloaders¶ (
Union
[Any
,LightningDataModule
,None
]) – An iterable or collection of iterables specifying test samples. Alternatively, aLightningDataModule
that defines the :class:`~lightning.pytorch.core.hooks.DataHooks.test_dataloader hook.ckpt_path¶ (
Optional
[str
]) – Either"best"
,"last"
,"hpc"
or path to the checkpoint you wish to test. IfNone
and the model instance was passed, use the current weights. Otherwise, the best model checkpoint from the previoustrainer.fit
call will be loaded if a checkpoint callback is configured.datamodule¶ (
Optional
[LightningDataModule
]) – ALightningDataModule
that defines the :class:`~lightning.pytorch.core.hooks.DataHooks.test_dataloader hook.
For more information about multiple dataloaders, see this section.
predict¶
- Trainer.predict(model=None, dataloaders=None, datamodule=None, return_predictions=None, ckpt_path=None)[source]
Run inference on your data. This will call the model forward function to compute predictions. Useful to perform distributed and batched predictions. Logging is disabled in the predict hooks.
- Parameters
model¶ (
Optional
[LightningModule
]) – The model to predict with.dataloaders¶ (
Union
[Any
,LightningDataModule
,None
]) – An iterable or collection of iterables specifying predict samples. Alternatively, aLightningDataModule
that defines the :class:`~lightning.pytorch.core.hooks.DataHooks.predict_dataloader hook.datamodule¶ (
Optional
[LightningDataModule
]) – ALightningDataModule
that defines the :class:`~lightning.pytorch.core.hooks.DataHooks.predict_dataloader hook.return_predictions¶ (
Optional
[bool
]) – Whether to return predictions.True
by default except when an accelerator that spawns processes is used (not supported).ckpt_path¶ (
Optional
[str
]) – Either"best"
,"last"
,"hpc"
or path to the checkpoint you wish to predict. IfNone
and the model instance was passed, use the current weights. Otherwise, the best model checkpoint from the previoustrainer.fit
call will be loaded if a checkpoint callback is configured.
For more information about multiple dataloaders, see this section.
- Return type
- Returns
Returns a list of dictionaries, one for each provided dataloader containing their respective predictions.
See Lightning inference section for more.
Properties¶
callback_metrics¶
The metrics available to callbacks. These are automatically set when you log via self.log
def training_step(self, batch, batch_idx):
self.log("a_val", 2)
callback_metrics = trainer.callback_metrics
assert callback_metrics["a_val"] == 2
datamodule¶
The current datamodule, which is used by the trainer.
used_datamodule = trainer.datamodule
is_last_batch¶
Whether trainer is executing last batch in the current epoch.
if trainer.is_last_batch:
...
global_step¶
The number of optimizer steps taken (does not reset each epoch). This includes multiple optimizers (if enabled).
if trainer.global_step >= 100:
...
logger¶
The current logger being used. Here’s an example using tensorboard
logger = trainer.logger
tensorboard = logger.experiment
loggers¶
The list of loggers currently being used by the Trainer.
# List of Logger objects
loggers = trainer.loggers
for logger in loggers:
logger.log_metrics({"foo": 1.0})
logged_metrics¶
The metrics sent to the logger (visualizer).
def training_step(self, batch, batch_idx):
self.log("a_val", 2, logger=True)
logged_metrics = trainer.logged_metrics
assert logged_metrics["a_val"] == 2
log_dir¶
The directory for the current experiment. Use this to save images to, etc…
def training_step(self, batch, batch_idx):
img = ...
save_img(img, self.trainer.log_dir)
is_global_zero¶
Whether this process is the global zero in multi-node training
def training_step(self, batch, batch_idx):
if self.trainer.is_global_zero:
print("in node 0, accelerator 0")
progress_bar_metrics¶
The metrics sent to the progress bar.
def training_step(self, batch, batch_idx):
self.log("a_val", 2, prog_bar=True)
progress_bar_metrics = trainer.progress_bar_metrics
assert progress_bar_metrics["a_val"] == 2
predict_dataloaders¶
The current predict dataloaders of the trainer. Note that property returns a list of predict dataloaders.
used_predict_dataloaders = trainer.predict_dataloaders
estimated_stepping_batches¶
Check out estimated_stepping_batches()
.
state¶
The current state of the Trainer, including the current function that is running, the stage of execution within that function, and the status of the Trainer.
# fn in ("fit", "validate", "test", "predict")
trainer.state.fn
# status in ("initializing", "running", "finished", "interrupted")
trainer.state.status
# stage in ("train", "sanity_check", "validate", "test", "predict")
trainer.state.stage
should_stop¶
If you want to terminate the training during .fit
, you can set trainer.should_stop=True
to terminate the training
as soon as possible. Note that, it will respect the arguments min_steps
and min_epochs
to check whether to stop. If these
arguments are set and the current_epoch
or global_step
don’t meet these minimum conditions, training will continue until
both conditions are met. If any of these arguments is not set, it won’t be considered for the final decision.
# setting `trainer.should_stop` at any point of training will terminate it
class LitModel(LightningModule):
def training_step(self, *args, **kwargs):
self.trainer.should_stop = True
trainer = Trainer()
model = LitModel()
trainer.fit(model)
# setting `trainer.should_stop` will stop training only after at least 5 epochs have run
class LitModel(LightningModule):
def training_step(self, *args, **kwargs):
if self.current_epoch == 2:
self.trainer.should_stop = True
trainer = Trainer(min_epochs=5, max_epochs=100)
model = LitModel()
trainer.fit(model)
# setting `trainer.should_stop` will stop training only after at least 5 steps have run
class LitModel(LightningModule):
def training_step(self, *args, **kwargs):
if self.global_step == 2:
self.trainer.should_stop = True
trainer = Trainer(min_steps=5, max_epochs=100)
model = LitModel()
trainer.fit(model)
# setting `trainer.should_stop` at any until both min_steps and min_epochs are satisfied
class LitModel(LightningModule):
def training_step(self, *args, **kwargs):
if self.global_step == 7:
self.trainer.should_stop = True
trainer = Trainer(min_steps=5, min_epochs=5, max_epochs=100)
model = LitModel()
trainer.fit(model)
train_dataloader¶
The current train dataloader of the trainer.
used_train_dataloader = trainer.train_dataloader
test_dataloaders¶
The current test dataloaders of the trainer. Note that property returns a list of test dataloaders.
used_test_dataloaders = trainer.test_dataloaders
val_dataloaders¶
The current val dataloaders of the trainer. Note that property returns a list of val dataloaders.
used_val_dataloaders = trainer.val_dataloaders