logger¶
Functions
| Merge a sequence with dictionaries into one dictionary by aggregating the same keys with some given function. | 
Classes
| Dummy logger for internal use. | |
| Base class for experiment loggers. | 
Abstract base class used to build new loggers.
- class lightning.pytorch.loggers.logger.DummyLogger[source]¶
- Bases: - lightning.pytorch.loggers.logger.Logger- Dummy logger for internal use. - It is useful if we want to disable user’s logger for a feature, but still ensure that user code can run - log_metrics(*args, **kwargs)[source]¶
- Records metrics. This method logs metrics as soon as it received them. 
 - property experiment: lightning.fabric.loggers.logger._DummyExperiment¶
- Return the experiment object associated with this logger. - Return type
- _DummyExperiment
 
 
- class lightning.pytorch.loggers.logger.Logger[source]¶
- Bases: - lightning.fabric.loggers.logger.Logger,- abc.ABC- Base class for experiment loggers. - after_save_checkpoint(checkpoint_callback)[source]¶
- Called after model checkpoint callback saves a new checkpoint. - Parameters
- checkpoint_callback¶ ( - ModelCheckpoint) – the model checkpoint callback instance
- Return type
 
 
- lightning.pytorch.loggers.logger.merge_dicts(dicts, agg_key_funcs=None, default_func=<function mean>)[source]¶
- Merge a sequence with dictionaries into one dictionary by aggregating the same keys with some given function. - Parameters
- dicts¶ ( - Sequence[- Mapping]) – Sequence of dictionaries to be merged.
- agg_key_funcs¶ ( - Optional[- Mapping]) – Mapping from key name to function. This function will aggregate a list of values, obtained from the same key of all dictionaries. If some key has no specified aggregation function, the default one will be used. Default is:- None(all keys will be aggregated by the default function).
- default_func¶ ( - Callable[[- Sequence[- float]],- float]) – Default function to aggregate keys, which are not presented in the agg_key_funcs map.
 
- Return type
- Returns
- Dictionary with merged values. 
 - Examples - >>> import pprint >>> d1 = {'a': 1.7, 'b': 2.0, 'c': 1, 'd': {'d1': 1, 'd3': 3}} >>> d2 = {'a': 1.1, 'b': 2.2, 'v': 1, 'd': {'d1': 2, 'd2': 3}} >>> d3 = {'a': 1.1, 'v': 2.3, 'd': {'d3': 3, 'd4': {'d5': 1}}} >>> dflt_func = min >>> agg_funcs = {'a': np.mean, 'v': max, 'd': {'d1': sum}} >>> pprint.pprint(merge_dicts([d1, d2, d3], agg_funcs, dflt_func)) {'a': 1.3, 'b': 2.0, 'c': 1, 'd': {'d1': 3, 'd2': 3, 'd3': 3, 'd4': {'d5': 1}}, 'v': 2.3}