Track and Visualize Experiments (expert)¶
Audience: Users who want to make their own progress bars or integrate new experiment managers.
Change the progress bar¶
If you’d like to change the way the progress bar displays information you can use some of our built-in progress bard or build your own.
Use the TQDMProgressBar¶
To use the TQDMProgressBar pass it into the callbacks Trainer
argument.
from pytorch_lightning.callbacks import TQDMProgressBar
trainer = Trainer(callbacks=[TQDMProgressBar()])
Use the RichProgressBar¶
The RichProgressBar can add custom colors and beautiful formatting for your progress bars. First, install the `rich <https://github.com/Textualize/rich>`_ library
pip install rich
Then pass the callback into the callbacks Trainer
argument:
from pytorch_lightning.callbacks import RichProgressBar
trainer = Trainer(callbacks=[RichProgressBar()])
The rich progress bar can also have custom themes
from pytorch_lightning.callbacks import RichProgressBar
from pytorch_lightning.callbacks.progress.rich_progress import RichProgressBarTheme
# create your own theme!
theme = RichProgressBarTheme(description="green_yellow", progress_bar="green1")
# init as normal
progress_bar = RichProgressBar(theme=theme)
trainer = Trainer(callbacks=progress_bar)
Customize a progress bar¶
To customize either the TQDMProgressBar
or the RichProgressBar
, subclass it and override any of its methods.
from pytorch_lightning.callbacks import TQDMProgressBar
class LitProgressBar(TQDMProgressBar):
def init_validation_tqdm(self):
bar = super().init_validation_tqdm()
bar.set_description("running validation...")
return bar
Build your own progress bar¶
To build your own progress bar, subclass ProgressBarBase
from pytorch_lightning.callbacks import ProgressBarBase
class LitProgressBar(ProgressBarBase):
def __init__(self):
super().__init__() # don't forget this :)
self.enable = True
def disable(self):
self.enable = False
def on_train_batch_end(self, trainer, pl_module, outputs, batch_idx):
super().on_train_batch_end(trainer, pl_module, outputs, batch_idx) # don't forget this :)
percent = (self.train_batch_idx / self.total_train_batches) * 100
sys.stdout.flush()
sys.stdout.write(f"{percent:.01f} percent complete \r")
bar = LitProgressBar()
trainer = Trainer(callbacks=[bar])
Integrate an experiment manager¶
To create an integration between a custom logger and Lightning, subclass LightningLoggerBase
from pytorch_lightning.loggers import Logger
class LitLogger(Logger):
@property
def name(self) -> str:
return "my-experiment"
@property
def version(self):
return "version_0"
def log_metrics(self, metrics, step=None):
print("my logged metrics", metrics)
def log_hyperparams(self, params, *args, **kwargs):
print("my logged hyperparameters", params)