Callback¶
- class pytorch_lightning.callbacks.Callback[source]¶
Bases:
object
Abstract base class used to build new callbacks.
Subclass this class and override any of the relevant hooks
- load_state_dict(state_dict)[source]¶
Called when loading a checkpoint, implement to reload callback state given callback’s
state_dict
.
- on_after_backward(trainer, pl_module)[source]¶
Called after
loss.backward()
and before optimizers are stepped.- Return type:
- on_before_optimizer_step(trainer, pl_module, optimizer, opt_idx)[source]¶
Called before
optimizer.step()
.- Return type:
- on_before_zero_grad(trainer, pl_module, optimizer)[source]¶
Called before
optimizer.zero_grad()
.- Return type:
- on_exception(trainer, pl_module, exception)[source]¶
Called when any trainer execution is interrupted by an exception.
- Return type:
- on_load_checkpoint(trainer, pl_module, checkpoint)[source]¶
Called when loading a model checkpoint, use to reload state.
- Parameters:
pl_module¶ (
LightningModule
) – the currentLightningModule
instance.checkpoint¶ (
Dict
[str
,Any
]) – the full checkpoint dictionary that got loaded by the Trainer.
- Return type:
- on_predict_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx)[source]¶
Called when the predict batch ends.
- Return type:
- on_predict_batch_start(trainer, pl_module, batch, batch_idx, dataloader_idx)[source]¶
Called when the predict batch begins.
- Return type:
- on_predict_epoch_end(trainer, pl_module, outputs)[source]¶
Called when the predict epoch ends.
- Return type:
- on_predict_epoch_start(trainer, pl_module)[source]¶
Called when the predict epoch begins.
- Return type:
- on_sanity_check_end(trainer, pl_module)[source]¶
Called when the validation sanity check ends.
- Return type:
- on_sanity_check_start(trainer, pl_module)[source]¶
Called when the validation sanity check starts.
- Return type:
- on_save_checkpoint(trainer, pl_module, checkpoint)[source]¶
Called when saving a checkpoint to give you a chance to store anything else you might want to save.
- Parameters:
pl_module¶ (
LightningModule
) – the currentLightningModule
instance.checkpoint¶ (
Dict
[str
,Any
]) – the checkpoint dictionary that will be saved.
- Return type:
- on_test_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx)[source]¶
Called when the test batch ends.
- Return type:
- on_test_batch_start(trainer, pl_module, batch, batch_idx, dataloader_idx)[source]¶
Called when the test batch begins.
- Return type:
- on_train_batch_end(trainer, pl_module, outputs, batch, batch_idx)[source]¶
Called when the train batch ends. :rtype:
None
Note
The value
outputs["loss"]
here will be the normalized value w.r.taccumulate_grad_batches
of the loss returned fromtraining_step
.
- on_train_batch_start(trainer, pl_module, batch, batch_idx)[source]¶
Called when the train batch begins.
- Return type:
- on_train_epoch_end(trainer, pl_module)[source]¶
Called when the train epoch ends.
To access all batch outputs at the end of the epoch, either: :rtype:
None
Implement training_epoch_end in the LightningModule and access outputs via the module OR
Cache data across train batch hooks inside the callback implementation to post-process in this hook.
- on_validation_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx)[source]¶
Called when the validation batch ends.
- Return type:
- on_validation_batch_start(trainer, pl_module, batch, batch_idx, dataloader_idx)[source]¶
Called when the validation batch begins.
- Return type:
- on_validation_epoch_start(trainer, pl_module)[source]¶
Called when the val epoch begins.
- Return type:
- on_validation_start(trainer, pl_module)[source]¶
Called when the validation loop begins.
- Return type:
- setup(trainer, pl_module, stage)[source]¶
Called when fit, validate, test, predict, or tune begins.
- Return type:
- teardown(trainer, pl_module, stage)[source]¶
Called when fit, validate, test, predict, or tune ends.
- Return type:
- property state_key: str¶
Identifier for the state of the callback.
Used to store and retrieve a callback’s state from the checkpoint dictionary by
checkpoint["callbacks"][state_key]
. Implementations of a callback need to provide a unique state key if 1) the callback has state and 2) it is desired to maintain the state of multiple instances of that callback.