Source code for pytorch_lightning.plugins.precision.deepspeed
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Callable, cast, Optional, TYPE_CHECKING, Union
from lightning_utilities.core.imports import RequirementCache
from torch import Tensor
from torch.optim import LBFGS, Optimizer
from typing_extensions import get_args, Literal
import pytorch_lightning as pl
from lightning_fabric.utilities.types import Steppable
from pytorch_lightning.plugins.precision.apex_amp import _APEX_AVAILABLE
from pytorch_lightning.plugins.precision.precision_plugin import PrecisionPlugin
from pytorch_lightning.utilities import GradClipAlgorithmType
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.model_helpers import is_overridden
from pytorch_lightning.utilities.rank_zero import rank_zero_deprecation, WarningCache
_DEEPSPEED_AVAILABLE = RequirementCache("deepspeed")
if TYPE_CHECKING and _DEEPSPEED_AVAILABLE:
import deepspeed
warning_cache = WarningCache()
_PRECISION_INPUT_INT = Literal[32, 16]
_PRECISION_INPUT_STR = Literal["32", "16", "bf16"]
_PRECISION_INPUT = Union[_PRECISION_INPUT_INT, _PRECISION_INPUT_STR]
[docs]class DeepSpeedPrecisionPlugin(PrecisionPlugin):
"""Precision plugin for DeepSpeed integration.
Args:
precision: Full precision (32), half precision (16) or bfloat16 precision (bf16).
Raises:
ValueError:
If unsupported ``precision`` is provided.
"""
def __init__(
self,
precision: Literal["32", 32, "16", 16, "bf16"],
amp_type: Optional[str] = None,
amp_level: Optional[str] = None,
) -> None:
if amp_type == "apex":
# TODO: remove in v2.0.0
rank_zero_deprecation(
"The NVIDIA/apex AMP implementation has been deprecated upstream. Consequently, its integration inside"
" PyTorch Lightning has been deprecated in v1.9.0. Support for using it through the DeepSpeed"
" implementation will be removed in v2.0.0."
)
if not _APEX_AVAILABLE:
raise MisconfigurationException(
"You have asked for Apex AMP but `apex` is not installed."
" Install `apex` using this guide: https://github.com/NVIDIA/apex"
)
amp_level = amp_level or "O2"
elif amp_level is not None:
raise ValueError(
f"`{type(self).__name__}(amp_level={amp_level!r})` is only relevant when using NVIDIA/apex"
)
if amp_type is None:
amp_type = "native"
else:
rank_zero_deprecation(
f"Passing `{type(self).__name__}(amp_type={amp_type!r})` been deprecated in v1.9.0 and will be removed"
f" in v2.0.0. This argument is no longer necessary."
)
supported_precision = get_args(_PRECISION_INPUT_STR) + get_args(_PRECISION_INPUT_INT)
if precision not in supported_precision:
raise ValueError(
f"`Trainer(strategy='deepspeed', precision={precision!r})` is not supported."
f" `precision` must be one of: {supported_precision}."
)
self.precision = cast(_PRECISION_INPUT_STR, str(precision))
self.amp_type = amp_type
self.amp_level = amp_level
[docs] def backward( # type: ignore[override]
self,
tensor: Tensor,
model: "pl.LightningModule",
optimizer: Optional[Steppable],
optimizer_idx: Optional[int],
*args: Any,
**kwargs: Any,
) -> None:
r"""Performs back-propagation using DeepSpeed's engine.
Args:
tensor: the loss tensor
model: the model to be optimized
optimizer: ignored for DeepSpeed
optimizer_idx: ignored for DeepSpeed
\*args: additional positional arguments for the :meth:`deepspeed.DeepSpeedEngine.backward` call
\**kwargs: additional keyword arguments for the :meth:`deepspeed.DeepSpeedEngine.backward` call
"""
if is_overridden("backward", model):
warning_cache.warn(
"You have overridden the `LightningModule.backward` hook but it will be ignored since DeepSpeed handles"
" the backward logic internally."
)
deepspeed_engine: "deepspeed.DeepSpeedEngine" = model.trainer.model
deepspeed_engine.backward(tensor, *args, **kwargs)
[docs] def optimizer_step( # type: ignore[override]
self,
optimizer: Steppable,
model: "pl.LightningModule",
optimizer_idx: int,
closure: Callable[[], Any],
**kwargs: Any,
) -> Any:
if isinstance(optimizer, LBFGS):
raise MisconfigurationException(
f"DeepSpeed and the LBFGS optimizer are not compatible (optimizer {optimizer_idx})."
)
closure_result = closure()
self._after_closure(model, optimizer, optimizer_idx)
skipped_backward = closure_result is None
# in manual optimization, the closure does not return a value
if model.automatic_optimization and skipped_backward:
raise MisconfigurationException(
"Skipping backward by returning `None` from your `training_step` is not supported by `DeepSpeed`"
)
# DeepSpeed handles the optimizer step internally
deepspeed_engine: "deepspeed.DeepSpeedEngine" = model.trainer.model
return deepspeed_engine.step(**kwargs)
[docs] def clip_gradients(
self,
optimizer: Optimizer,
clip_val: Union[int, float] = 0.0,
gradient_clip_algorithm: GradClipAlgorithmType = GradClipAlgorithmType.NORM,
) -> None:
"""DeepSpeed handles gradient clipping internally."""
def _track_grad_norm(self, trainer: "pl.Trainer") -> None:
if trainer.track_grad_norm == -1:
return
# the gradients are not available in the model due to gradient partitioning in zero stage >= 2
warning_cache.warn(
f"You set `Trainer(track_grad_norm={trainer.track_grad_norm!r})' but this is not supported for DeepSpeed."
" The setting will be ignored."
)