Source code for pytorch_lightning.callbacks.lr_finder
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""
LearningRateFinder
==================
Finds optimal learning rate
"""
from typing import Optional
import pytorch_lightning as pl
from pytorch_lightning.callbacks.callback import Callback
from pytorch_lightning.tuner.lr_finder import _LRFinder, lr_find
from pytorch_lightning.utilities.exceptions import _TunerExitException
from pytorch_lightning.utilities.seed import isolate_rng
[docs]class LearningRateFinder(Callback):
"""The ``LearningRateFinder`` callback enables the user to do a range test of good initial learning rates, to
reduce the amount of guesswork in picking a good starting learning rate.
Args:
min_lr: Minimum learning rate to investigate
max_lr: Maximum learning rate to investigate
num_training_steps: Number of learning rates to test
mode: Search strategy to update learning rate after each batch:
- ``'exponential'`` (default): Increases the learning rate exponentially.
- ``'linear'``: Increases the learning rate linearly.
early_stop_threshold: Threshold for stopping the search. If the
loss at any point is larger than early_stop_threshold*best_loss
then the search is stopped. To disable, set to None.
update_attr: Whether to update the learning rate attribute or not.
Example::
# Customize LearningRateFinder callback to run at different epochs.
# This feature is useful while fine-tuning models.
from pytorch_lightning.callbacks import LearningRateFinder
class FineTuneLearningRateFinder(LearningRateFinder):
def __init__(self, milestones, *args, **kwargs):
super().__init__(*args, **kwargs)
self.milestones = milestones
def on_fit_start(self, *args, **kwargs):
return
def on_train_epoch_start(self, trainer, pl_module):
if trainer.current_epoch in self.milestones or trainer.current_epoch == 0:
self.lr_find(trainer, pl_module)
trainer = Trainer(callbacks=[FineTuneLearningRateFinder(milestones=(5, 10))])
trainer.fit(...)
Raises:
MisconfigurationException:
If learning rate/lr in ``model`` or ``model.hparams`` isn't overridden when ``auto_lr_find=True``,
or if you are using more than one optimizer.
"""
SUPPORTED_MODES = ("linear", "exponential")
def __init__(
self,
min_lr: float = 1e-8,
max_lr: float = 1,
num_training_steps: int = 100,
mode: str = "exponential",
early_stop_threshold: Optional[float] = 4.0,
update_attr: bool = False,
) -> None:
mode = mode.lower()
if mode not in self.SUPPORTED_MODES:
raise ValueError(f"`mode` should be either of {self.SUPPORTED_MODES}")
self._min_lr = min_lr
self._max_lr = max_lr
self._num_training_steps = num_training_steps
self._mode = mode
self._early_stop_threshold = early_stop_threshold
self._update_attr = update_attr
self._early_exit = False
self.lr_finder: Optional[_LRFinder] = None
def lr_find(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
with isolate_rng():
self.optimal_lr = lr_find(
trainer,
pl_module,
min_lr=self._min_lr,
max_lr=self._max_lr,
num_training=self._num_training_steps,
mode=self._mode,
early_stop_threshold=self._early_stop_threshold,
update_attr=self._update_attr,
)
if self._early_exit:
raise _TunerExitException()
[docs] def on_fit_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
self.lr_find(trainer, pl_module)