Shortcuts

Source code for pytorch_lightning.callbacks.device_stats_monitor

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Device Stats Monitor
====================

Monitors and logs device stats during training.

"""
from typing import Any, Dict, Optional

import pytorch_lightning as pl
from pytorch_lightning.callbacks.callback import Callback
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.imports import _PSUTIL_AVAILABLE
from pytorch_lightning.utilities.rank_zero import rank_zero_warn
from pytorch_lightning.utilities.types import STEP_OUTPUT


[docs]class DeviceStatsMonitor(Callback): r""" Automatically monitors and logs device stats during training, validation and testing stage. ``DeviceStatsMonitor`` is a special callback as it requires a ``logger`` to passed as argument to the ``Trainer``. Args: cpu_stats: if ``None``, it will log CPU stats only if the accelerator is CPU. It will raise a warning if ``psutil`` is not installed till v1.9.0. If ``True``, it will log CPU stats regardless of the accelerator, and it will raise an exception if ``psutil`` is not installed. If ``False``, it will not log CPU stats regardless of the accelerator. Raises: MisconfigurationException: If ``Trainer`` has no logger. Example: >>> from pytorch_lightning import Trainer >>> from pytorch_lightning.callbacks import DeviceStatsMonitor >>> device_stats = DeviceStatsMonitor() # doctest: +SKIP >>> trainer = Trainer(callbacks=[device_stats]) # doctest: +SKIP """ def __init__(self, cpu_stats: Optional[bool] = None) -> None: self._cpu_stats = cpu_stats
[docs] def setup( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", stage: str, ) -> None: if stage != "fit": return if not trainer.loggers: raise MisconfigurationException("Cannot use `DeviceStatsMonitor` callback with `Trainer(logger=False)`.") # warn in setup to warn once device = trainer.strategy.root_device if self._cpu_stats is None and device.type == "cpu" and not _PSUTIL_AVAILABLE: # TODO: raise an exception from v1.9 rank_zero_warn( "`DeviceStatsMonitor` will not log CPU stats as `psutil` is not installed." " To install `psutil`, run `pip install psutil`." " It will raise an exception if `psutil` is not installed post v1.9.0." ) self._cpu_stats = False
def _get_and_log_device_stats(self, trainer: "pl.Trainer", key: str) -> None: if not trainer._logger_connector.should_update_logs: return device = trainer.strategy.root_device if self._cpu_stats is False and device.type == "cpu": # cpu stats are disabled return device_stats = trainer.accelerator.get_device_stats(device) if self._cpu_stats and device.type != "cpu": # Don't query CPU stats twice if CPU is accelerator from pytorch_lightning.accelerators.cpu import get_cpu_stats device_stats.update(get_cpu_stats()) for logger in trainer.loggers: separator = logger.group_separator prefixed_device_stats = _prefix_metric_keys(device_stats, f"{self.__class__.__qualname__}.{key}", separator) logger.log_metrics(prefixed_device_stats, step=trainer.fit_loop.epoch_loop._batches_that_stepped)
[docs] def on_train_batch_start( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", batch: Any, batch_idx: int ) -> None: self._get_and_log_device_stats(trainer, "on_train_batch_start")
[docs] def on_train_batch_end( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", outputs: STEP_OUTPUT, batch: Any, batch_idx: int ) -> None: self._get_and_log_device_stats(trainer, "on_train_batch_end")
[docs] def on_validation_batch_start( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", batch: Any, batch_idx: int, dataloader_idx: int ) -> None: self._get_and_log_device_stats(trainer, "on_validation_batch_start")
[docs] def on_validation_batch_end( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", outputs: Optional[STEP_OUTPUT], batch: Any, batch_idx: int, dataloader_idx: int, ) -> None: self._get_and_log_device_stats(trainer, "on_validation_batch_end")
[docs] def on_test_batch_start( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", batch: Any, batch_idx: int, dataloader_idx: int ) -> None: self._get_and_log_device_stats(trainer, "on_test_batch_start")
[docs] def on_test_batch_end( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", outputs: Optional[STEP_OUTPUT], batch: Any, batch_idx: int, dataloader_idx: int, ) -> None: self._get_and_log_device_stats(trainer, "on_test_batch_end")
def _prefix_metric_keys(metrics_dict: Dict[str, float], prefix: str, separator: str) -> Dict[str, float]: return {prefix + separator + k: v for k, v in metrics_dict.items()}

© Copyright Copyright (c) 2018-2023, Lightning AI et al...

Built with Sphinx using a theme provided by Read the Docs.