Shortcuts

Source code for lightning_fabric.strategies.single_tpu

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Optional

from lightning_fabric.accelerators import Accelerator
from lightning_fabric.plugins.io.checkpoint_io import CheckpointIO
from lightning_fabric.plugins.io.xla import XLACheckpointIO
from lightning_fabric.plugins.precision import Precision
from lightning_fabric.strategies.single_device import SingleDeviceStrategy


[docs]class SingleTPUStrategy(SingleDeviceStrategy): """Strategy for training on a single TPU device.""" def __init__( self, device: int, accelerator: Optional[Accelerator] = None, checkpoint_io: Optional[CheckpointIO] = None, precision: Optional[Precision] = None, ): import torch_xla.core.xla_model as xm super().__init__( accelerator=accelerator, device=xm.xla_device(device), checkpoint_io=checkpoint_io, precision=precision, ) @property def checkpoint_io(self) -> CheckpointIO: if self._checkpoint_io is None: self._checkpoint_io = XLACheckpointIO() return self._checkpoint_io @checkpoint_io.setter def checkpoint_io(self, io: Optional[CheckpointIO]) -> None: self._checkpoint_io = io @classmethod def register_strategies(cls, strategy_registry: Dict) -> None: strategy_registry.register("single_tpu", cls, description=f"{cls.__class__.__name__}")

© Copyright Copyright (c) 2018-2023, Lightning AI et al...

Built with Sphinx using a theme provided by Read the Docs.