Shortcuts

Source code for lightning_fabric.plugins.collectives.torch_collective

import datetime
import os
from typing import Any, List, Optional, Union

import torch
import torch.distributed as dist
from torch import Tensor
from typing_extensions import Self

from lightning_fabric.plugins.collectives.collective import Collective
from lightning_fabric.utilities.imports import _TORCH_GREATER_EQUAL_1_13
from lightning_fabric.utilities.types import CollectibleGroup, RedOpType, ReduceOp

if dist.is_available():
    from torch.distributed.constants import default_pg_timeout
else:
    default_pg_timeout = datetime.timedelta(seconds=1800)


[docs]class TorchCollective(Collective): manages_default_group = False def __init__(self) -> None: if not dist.is_available(): raise RuntimeError("Torch distributed is not available.") super().__init__() @property def rank(self) -> int: # local rank return dist.get_rank(self.group) @property def world_size(self) -> int: return dist.get_world_size(self.group) def broadcast(self, tensor: Tensor, src: int) -> Tensor: dist.broadcast(tensor, src, group=self.group) return tensor def all_reduce(self, tensor: Tensor, op: Union[str, ReduceOp, RedOpType] = "sum") -> Tensor: op = self._convert_to_native_op(op) dist.all_reduce(tensor, op=op, group=self.group) return tensor def reduce(self, tensor: Tensor, dst: int, op: Union[str, ReduceOp, RedOpType] = "sum") -> Tensor: op = self._convert_to_native_op(op) dist.reduce(tensor, dst, op=op, group=self.group) return tensor def all_gather(self, tensor_list: List[Tensor], tensor: Tensor) -> List[Tensor]: dist.all_gather(tensor_list, tensor, group=self.group) return tensor_list def gather(self, tensor: Tensor, gather_list: List[Tensor], dst: int = 0) -> List[Tensor]: dist.gather(tensor, gather_list, dst, group=self.group) return gather_list def scatter(self, tensor: Tensor, scatter_list: List[Tensor], src: int = 0) -> Tensor: dist.scatter(tensor, scatter_list, src, group=self.group) return tensor def reduce_scatter( self, output: Tensor, input_list: List[Tensor], op: Union[str, ReduceOp, RedOpType] = "sum" ) -> Tensor: op = self._convert_to_native_op(op) dist.reduce_scatter(output, input_list, op=op, group=self.group) return output def all_to_all(self, output_tensor_list: List[Tensor], input_tensor_list: List[Tensor]) -> List[Tensor]: dist.all_to_all(output_tensor_list, input_tensor_list, group=self.group) return output_tensor_list def send(self, tensor: Tensor, dst: int, tag: Optional[int] = 0) -> None: dist.send(tensor, dst, tag=tag, group=self.group) def recv(self, tensor: Tensor, src: Optional[int] = None, tag: Optional[int] = 0) -> Tensor: dist.recv(tensor, src, tag=tag, group=self.group) return tensor def all_gather_object(self, object_list: List[Any], obj: Any) -> List[Any]: dist.all_gather_object(object_list, obj, group=self.group) return object_list def broadcast_object_list( self, object_list: List[Any], src: int, device: Optional[torch.device] = None ) -> List[Any]: dist.broadcast_object_list(object_list, src, group=self.group, device=device) return object_list def gather_object(self, obj: Any, object_gather_list: List[Any], dst: int = 0) -> List[Any]: dist.gather_object(obj, object_gather_list, dst, group=self.group) return object_gather_list def scatter_object_list( self, scatter_object_output_list: List[Any], scatter_object_input_list: List[Any], src: int = 0 ) -> List[Any]: dist.scatter_object_list(scatter_object_output_list, scatter_object_input_list, src, group=self.group) return scatter_object_output_list def barrier(self, device_ids: Optional[List[int]] = None) -> None: if self.group == dist.GroupMember.NON_GROUP_MEMBER: return dist.barrier(group=self.group, device_ids=device_ids) def monitored_barrier(self, timeout: Optional[datetime.timedelta] = None, wait_all_ranks: bool = False) -> None: dist.monitored_barrier(group=self.group, timeout=timeout, wait_all_ranks=wait_all_ranks) def setup( self, main_address: Optional[str] = None, main_port: Optional[str] = None, **kwargs: Any ) -> Self: # type: ignore[valid-type] if self.is_initialized(): return self # maybe set addr set_addr = False addr_key = "MASTER_ADDR" if main_address is not None and addr_key not in os.environ: os.environ[addr_key] = main_address set_addr = True # maybe set port set_port = False port_key = "MASTER_PORT" if main_port is not None and port_key not in os.environ: os.environ[port_key] = str(main_port) set_port = True # this will `init_group` super().setup(**kwargs) # set as a class attribute so any instance can know whether we initialized the default process group TorchCollective.manages_default_group = True # cleanup if set_addr: os.environ.pop("MASTER_ADDR", None) if set_port: os.environ.pop("MASTER_PORT", None) return self def teardown(self) -> Self: # type: ignore[valid-type] non_group_member = self.group == dist.GroupMember.NON_GROUP_MEMBER super().teardown() # will destroy its own group # try to destroy the default group. this should only be done by a group member to avoid race conditions, # and only if the class is managing it if not non_group_member and TorchCollective.manages_default_group: default_group = dist.GroupMember.WORLD if default_group is not None: # not destroyed already group_map = dist.distributed_c10d._pg_map if len(group_map) == 1 and default_group in group_map: # only the default group is left self.destroy_group(default_group) TorchCollective.manages_default_group = False return self @classmethod def is_available(cls) -> bool: return dist.is_available() @classmethod def is_initialized(cls) -> bool: return dist.is_initialized() @classmethod def init_group(cls, **kwargs: Any) -> None: dist.init_process_group(**kwargs) @classmethod def new_group(cls, **kwargs: Any) -> CollectibleGroup: return dist.new_group(**kwargs) @classmethod def destroy_group(cls, group: CollectibleGroup) -> None: # can be called by all processes in the default group, group will be `object()` if they are not part of the # current group dist.destroy_process_group(group) @classmethod def _convert_to_native_op(cls, op: Union[str, ReduceOp, RedOpType]) -> Union[ReduceOp, RedOpType]: # in 1.13, `ReduceOp` has become an empty shell for `RedOpType`, the latter being the actually returned class. # for example, `ReduceOp.SUM` returns a `RedOpType.SUM`. the only exception is `RedOpType.PREMUL_SUM` where # `ReduceOp` is still the desired class, but it's created via a special `_make_nccl_premul_sum` function if isinstance(op, ReduceOp) or _TORCH_GREATER_EQUAL_1_13 and isinstance(op, RedOpType): return op if not isinstance(op, str): raise ValueError(f"Unsupported op {op!r} of type {type(op).__name__}") op = op.upper() # `ReduceOp` should contain `RedOpType`'s members value = getattr(ReduceOp, op, None) if value is None: raise ValueError(f"op {op!r} is not a member of `ReduceOp`") return value

© Copyright Copyright (c) 2018-2023, Lightning AI et al...

Built with Sphinx using a theme provided by Read the Docs.