Shortcuts

Source code for lightning_fabric.loggers.csv_logs

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import csv
import logging
import os
from argparse import Namespace
from typing import Any, Dict, List, Optional, Union

from torch import Tensor

from lightning_fabric.loggers.logger import Logger, rank_zero_experiment
from lightning_fabric.utilities.logger import _add_prefix
from lightning_fabric.utilities.rank_zero import rank_zero_only, rank_zero_warn
from lightning_fabric.utilities.types import _PATH

log = logging.getLogger(__name__)


[docs]class CSVLogger(Logger): r""" Log to the local file system in CSV format. Logs are saved to ``os.path.join(root_dir, name, version)``. Args: root_dir: The root directory in which all your experiments with different names and versions will be stored. name: Experiment name. Defaults to ``'lightning_logs'``. version: Experiment version. If version is not specified the logger inspects the save directory for existing versions, then automatically assigns the next available version. prefix: A string to put at the beginning of metric keys. flush_logs_every_n_steps: How often to flush logs to disk (defaults to every 100 steps). Example:: from lightning.fabric.loggers import CSVLogger logger = CSVLogger("path/to/logs/root", name="my_model") logger.log_metrics({"loss": 0.235, "acc": 0.75}) logger.finalize("success") """ LOGGER_JOIN_CHAR = "-" def __init__( self, root_dir: _PATH, name: str = "lightning_logs", version: Optional[Union[int, str]] = None, prefix: str = "", flush_logs_every_n_steps: int = 100, ): super().__init__() self._root_dir = os.fspath(root_dir) self._name = name or "" self._version = version self._prefix = prefix self._experiment: Optional[_ExperimentWriter] = None self._flush_logs_every_n_steps = flush_logs_every_n_steps @property def name(self) -> str: """Gets the name of the experiment. Returns: The name of the experiment. """ return self._name @property def version(self) -> Union[int, str]: """Gets the version of the experiment. Returns: The version of the experiment if it is specified, else the next version. """ if self._version is None: self._version = self._get_next_version() return self._version @property def root_dir(self) -> str: """Gets the save directory where the versioned CSV experiments are saved.""" return self._root_dir @property def log_dir(self) -> str: """The log directory for this run. By default, it is named ``'version_${self.version}'`` but it can be overridden by passing a string value for the constructor's version parameter instead of ``None`` or an int. """ # create a pseudo standard path version = self.version if isinstance(self.version, str) else f"version_{self.version}" log_dir = os.path.join(self.root_dir, self.name, version) return log_dir @property @rank_zero_experiment def experiment(self) -> "_ExperimentWriter": """Actual ExperimentWriter object. To use ExperimentWriter features anywhere in your code, do the following. Example:: self.logger.experiment.some_experiment_writer_function() """ if self._experiment is not None: return self._experiment os.makedirs(self.root_dir, exist_ok=True) self._experiment = _ExperimentWriter(log_dir=self.log_dir) return self._experiment
[docs] @rank_zero_only def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None: raise NotImplementedError("The `CSVLogger` does not yet support logging hyperparameters.")
[docs] @rank_zero_only def log_metrics(self, metrics: Dict[str, Union[Tensor, float]], step: Optional[int] = None) -> None: metrics = _add_prefix(metrics, self._prefix, self.LOGGER_JOIN_CHAR) self.experiment.log_metrics(metrics, step) if step is not None and (step + 1) % self._flush_logs_every_n_steps == 0: self.save()
[docs] @rank_zero_only def save(self) -> None: super().save() self.experiment.save()
[docs] @rank_zero_only def finalize(self, status: str) -> None: if self._experiment is None: # When using multiprocessing, finalize() should be a no-op on the main process, as no experiment has been # initialized there return self.save()
def _get_next_version(self) -> int: root_dir = self.root_dir if not os.path.isdir(root_dir): log.warning("Missing logger folder: %s", root_dir) return 0 existing_versions = [] for d in os.listdir(root_dir): if os.path.isdir(os.path.join(root_dir, d)) and d.startswith("version_"): existing_versions.append(int(d.split("_")[1])) if len(existing_versions) == 0: return 0 return max(existing_versions) + 1
class _ExperimentWriter: r""" Experiment writer for CSVLogger. Args: log_dir: Directory for the experiment logs """ NAME_METRICS_FILE = "metrics.csv" def __init__(self, log_dir: str) -> None: self.metrics: List[Dict[str, float]] = [] self.log_dir = log_dir if os.path.exists(self.log_dir) and os.listdir(self.log_dir): rank_zero_warn( f"Experiment logs directory {self.log_dir} exists and is not empty." " Previous log files in this directory will be deleted when the new ones are saved!" ) os.makedirs(self.log_dir, exist_ok=True) self.metrics_file_path = os.path.join(self.log_dir, self.NAME_METRICS_FILE) def log_metrics(self, metrics_dict: Dict[str, float], step: Optional[int] = None) -> None: """Record metrics.""" def _handle_value(value: Union[Tensor, Any]) -> Any: if isinstance(value, Tensor): return value.item() return value if step is None: step = len(self.metrics) metrics = {k: _handle_value(v) for k, v in metrics_dict.items()} metrics["step"] = step self.metrics.append(metrics) def save(self) -> None: """Save recorded metrics into files.""" if not self.metrics: return last_m = {} for m in self.metrics: last_m.update(m) metrics_keys = list(last_m.keys()) with open(self.metrics_file_path, "w", newline="") as f: writer = csv.DictWriter(f, fieldnames=metrics_keys) writer.writeheader() writer.writerows(self.metrics)

© Copyright Copyright (c) 2018-2023, Lightning AI et al...

Built with Sphinx using a theme provided by Read the Docs.