Shortcuts

Source code for lightning_fabric.accelerators.cpu

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Union

import torch

from lightning_fabric.accelerators.accelerator import Accelerator


[docs]class CPUAccelerator(Accelerator): """Accelerator for CPU devices."""
[docs] def setup_device(self, device: torch.device) -> None: """ Raises: ValueError: If the selected device is not CPU. """ if device.type != "cpu": raise ValueError(f"Device should be CPU, got {device} instead.")
[docs] def teardown(self) -> None: pass
[docs] @staticmethod def parse_devices(devices: Union[int, str, List[int]]) -> int: """Accelerator device parsing logic.""" devices = _parse_cpu_cores(devices) return devices
[docs] @staticmethod def get_parallel_devices(devices: Union[int, str, List[int]]) -> List[torch.device]: """Gets parallel devices for the Accelerator.""" devices = _parse_cpu_cores(devices) return [torch.device("cpu")] * devices
[docs] @staticmethod def auto_device_count() -> int: """Get the devices when set to auto.""" return 1
[docs] @staticmethod def is_available() -> bool: """CPU is always available for execution.""" return True
@classmethod def register_accelerators(cls, accelerator_registry: Dict) -> None: accelerator_registry.register( "cpu", cls, description=cls.__class__.__name__, )
def _parse_cpu_cores(cpu_cores: Union[int, str, List[int]]) -> int: """Parses the cpu_cores given in the format as accepted by the ``devices`` argument in the :class:`~pytorch_lightning.trainer.Trainer`. Args: cpu_cores: An int > 0. Returns: An int representing the number of processes Raises: MisconfigurationException: If cpu_cores is not an int > 0 """ if isinstance(cpu_cores, str) and cpu_cores.strip().isdigit(): cpu_cores = int(cpu_cores) if not isinstance(cpu_cores, int) or cpu_cores <= 0: raise TypeError("`devices` selected with `CPUAccelerator` should be an int > 0.") return cpu_cores

© Copyright Copyright (c) 2018-2023, Lightning AI et al...

Built with Sphinx using a theme provided by Read the Docs.