Shortcuts

PredictionEpochLoop

class pytorch_lightning.loops.epoch.PredictionEpochLoop[source]

Bases: pytorch_lightning.loops.base.Loop

Loop performing prediction on arbitrary sequentially used dataloaders.

advance(dataloader_iter, dataloader_idx, dl_max_batches, num_dataloaders, return_predictions=False)[source]

Runs one prediction step.

Parameters
  • dataloader_iter (Iterator) – the iterator over the current dataloader

  • dataloader_idx (int) – the index of the current dataloader

  • dl_max_batches (int) – the maximum number of batches the current loader can produce

  • num_dataloaders (int) – the total number of dataloaders

  • return_predictions (bool) – whether to return the obtained predictions

Return type

None

connect(**kwargs)[source]

Optionally connect one or multiple loops to this one.

Linked loops should form a tree.

Return type

None

on_run_end()[source]

Returns the predictions and the corresponding batch indices.

Return type

Tuple[List[Any], List[List[int]]]

on_run_start(dataloader_iter, dataloader_idx, dl_max_batches, num_dataloaders, return_predictions=False)[source]

Prepares the loops internal state.

Parameters
  • dataloader_iter (Iterator) – the iterator over the current dataloader

  • dataloader_idx (int) – the index of the current dataloader

  • dl_max_batches (int) – the maximum number of batches the current loader can produce

  • num_dataloaders (int) – the total number of dataloaders

  • return_predictions (bool) – whether to return the obtained predictions

Return type

None

reset()[source]

Resets the loops internal state.

Return type

None

property done: bool

Ends prediction when the iteration count exceeds the total number of available batches.

Return type

bool

property should_store_predictions: bool

Whether the predictions should be stored for later usage (e.g. aggregation or returning)

Return type

bool

You are viewing an outdated version of PyTorch Lightning Docs

Click here to view the latest version→