Shortcuts

EvaluationEpochLoop

class pytorch_lightning.loops.epoch.EvaluationEpochLoop[source]

Bases: pytorch_lightning.loops.base.Loop

This is the loop performing the evaluation.

It mainly loops over the given dataloader and runs the validation or test step (depending on the trainer’s current state).

advance(data_fetcher, dl_max_batches, kwargs)[source]

Calls the evaluation step with the corresponding hooks and updates the logger connector.

Parameters
  • data_fetcher (AbstractDataFetcher) – iterator over the dataloader

  • dl_max_batches (int) – maximum number of batches the dataloader can produce

  • kwargs (OrderedDict) – the kwargs passed down to the hooks.

Raises

StopIteration – If the current batch is None

Return type

None

on_load_checkpoint(state_dict)[source]

Called when loading a model checkpoint, use to reload loop state.

Return type

None

on_run_end()[source]

Returns the outputs of the whole run.

Return type

List[Union[Tensor, Dict[str, Any]]]

on_run_start(data_fetcher, dl_max_batches, kwargs)[source]

Adds the passed arguments to the loop’s state if necessary.

Parameters
  • data_fetcher (AbstractDataFetcher) – the current data_fetcher wrapping the dataloader

  • dl_max_batches (int) – maximum number of batches the dataloader can produce

  • kwargs (OrderedDict) – the kwargs passed down to the hooks.

Return type

None

on_save_checkpoint()[source]

Called when saving a model checkpoint, use to persist loop state.

Return type

Dict

Returns

The current loop state.

reset()[source]

Resets the loop’s internal state.

Return type

None

teardown()[source]

Use to release memory etc.

Return type

None

property done: bool

Returns True if the current iteration count reaches the number of dataloader batches.

Return type

bool

You are viewing an outdated version of PyTorch Lightning Docs

Click here to view the latest version→