BaseFinetuning
- class pytorch_lightning.callbacks.BaseFinetuning[source]
Bases:
pytorch_lightning.callbacks.base.Callback
This class implements the base logic for writing your own Finetuning Callback.
Override
freeze_before_training
andfinetune_function
methods with your own logic.freeze_before_training
: This method is called beforeconfigure_optimizers
and should be used to freeze any modules parameters.
finetune_function
: This method is called on every train epoch start and should be used tounfreeze
any parameters. Those parameters needs to be added in a newparam_group
within the optimizer.
Note
Make sure to filter the parameters based on
requires_grad
.Example:
>>> from torch.optim import Adam >>> class MyModel(pl.LightningModule): ... def configure_optimizer(self): ... # Make sure to filter the parameters based on `requires_grad` ... return Adam(filter(lambda p: p.requires_grad, self.parameters())) ... >>> class FeatureExtractorFreezeUnfreeze(BaseFinetuning): ... def __init__(self, unfreeze_at_epoch=10): ... super().__init__() ... self._unfreeze_at_epoch = unfreeze_at_epoch ... ... def freeze_before_training(self, pl_module): ... # freeze any module you want ... # Here, we are freezing `feature_extractor` ... self.freeze(pl_module.feature_extractor) ... ... def finetune_function(self, pl_module, current_epoch, optimizer, optimizer_idx): ... # When `current_epoch` is 10, feature_extractor will start training. ... if current_epoch == self._unfreeze_at_epoch: ... self.unfreeze_and_add_param_group( ... modules=pl_module.feature_extractor, ... optimizer=optimizer, ... train_bn=True, ... )
- static filter_on_optimizer(optimizer, params)[source]
This function is used to exclude any parameter which already exists in this optimizer.
- static filter_params(modules, train_bn=True, requires_grad=True)[source]
Yields the requires_grad parameters of a given module or list of modules.
- Parameters
- Return type
- Returns
Generator
- finetune_function(pl_module, epoch, optimizer, opt_idx)[source]
Override to add your unfreeze logic.
- Return type
- static flatten_modules(modules)[source]
This function is used to flatten a module or an iterable of modules into a list of its leaf modules (modules with no children) and parent modules that have parameters directly themselves.
- static freeze(modules, train_bn=True)[source]
Freezes the parameters of the provided modules.
- load_state_dict(state_dict)[source]
Called when loading a checkpoint, implement to reload callback state given callback’s
state_dict
.
- static make_trainable(modules)[source]
Unfreezes the parameters of the provided modules.
- setup(trainer, pl_module, stage=None)[source]
Called when fit, validate, test, predict, or tune begins.
- Return type
- state_dict()[source]
Called when saving a checkpoint, implement to generate callback’s
state_dict
.
- static unfreeze_and_add_param_group(modules, optimizer, lr=None, initial_denom_lr=10.0, train_bn=True)[source]
Unfreezes a module and adds its parameters to an optimizer.
- Parameters
modules (
Union
[Module
,Iterable
[Union
[Module
,Iterable
]]]) – A module or iterable of modules to unfreeze. Their parameters will be added to an optimizer as a new param group.optimizer (
Optimizer
) – The provided optimizer will receive new parameters and will add them to add_param_grouplr (
Optional
[float
]) – Learning rate for the new param group.initial_denom_lr (
float
) – If no lr is provided, the learning from the first param group will be used and divided by initial_denom_lr.train_bn (
bool
) – Whether to train the BatchNormalization layers.
- Return type