Source code for pytorch_lightning.plugins.precision.ipu
# Copyright The PyTorch Lightning team.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.fromtypingimportAny,Callable,Unionfromtorch.nnimportModulefromtorch.optimimportLBFGS,Optimizerimportpytorch_lightningasplfrompytorch_lightning.plugins.precision.precision_pluginimportPrecisionPluginfrompytorch_lightning.utilitiesimportGradClipAlgorithmTypefrompytorch_lightning.utilities.exceptionsimportMisconfigurationExceptionfrompytorch_lightning.utilities.model_helpersimportis_overriddenfrompytorch_lightning.utilities.warningsimportWarningCachewarning_cache=WarningCache()
[docs]classIPUPrecisionPlugin(PrecisionPlugin):"""Precision plugin for IPU integration. Raises: ValueError: If the precision is neither 16 nor 32. """def__init__(self,precision:int)->None:supported_precision_values=(16,32)ifprecisionnotinsupported_precision_values:raiseValueError(f"`Trainer(accelerator='ipu', precision={precision!r})` is not supported."f" `precision` must be one of: {supported_precision_values}.")super().__init__()self.precision=precision
[docs]defbackward(self,model:"pl.LightningModule",*args:Any,**kwargs:Any)->None:ifis_overridden("backward",model):warning_cache.warn("You have overridden the `LightningModule.backward` hook but it will be ignored since IPUs handle"" the backward logic internally.")
[docs]defoptimizer_step(self,model:Union["pl.LightningModule",Module],optimizer:Optimizer,optimizer_idx:int,closure:Callable[[],Any],**kwargs:Any,)->Any:"""IPUs handle the optimizer step internally."""ifisinstance(optimizer,LBFGS):raiseMisconfigurationException(f"IPUs and the LBFGS optimizer are not compatible (optimizer {optimizer_idx}).")closure_result=closure()self._after_closure(model,optimizer,optimizer_idx)skipped_backward=closure_resultisNone# in manual optimization, the closure does not return a valueifisinstance(model,pl.LightningModule)andmodel.automatic_optimizationandskipped_backward:# we lack coverage here and IPUs are (currently) limited - something to explore if there's demandraiseMisconfigurationException("Skipping backward by returning `None` from your `training_step` is not implemented for IPUs."" Please, open an issue in `https://github.com/PyTorchLightning/pytorch-lightning/issues`"" requesting this feature.")returnclosure_result
[docs]defclip_gradients(self,optimizer:Optimizer,clip_val:Union[int,float]=0.0,gradient_clip_algorithm:GradClipAlgorithmType=GradClipAlgorithmType.NORM,)->None:ifclip_val<=0:returnraiseMisconfigurationException("IPUs currently do not support clipping gradients.")
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. Read PyTorch Lightning's Privacy Policy.