EvaluationEpochLoop¶
- class pytorch_lightning.loops.epoch.EvaluationEpochLoop[source]¶
Bases:
abc.ABC
,Generic
[pytorch_lightning.loops.base.T
]This is the loop performing the evaluation.
It mainly loops over the given dataloader and runs the validation or test step (depending on the trainer’s current state).
- advance(data_fetcher, dataloader_idx, dl_max_batches, num_dataloaders)[source]¶
Calls the evaluation step with the corresponding hooks and updates the logger connector.
- Parameters
- Raises
StopIteration – If the current batch is None
- Return type
- connect(**kwargs)[source]¶
Optionally connect one or multiple loops to this one.
Linked loops should form a tree.
- Return type
- on_load_checkpoint(state_dict)[source]¶
Called when loading a model checkpoint, use to reload loop state.
- Return type
- on_run_start(data_fetcher, dataloader_idx, dl_max_batches, num_dataloaders)[source]¶
Adds the passed arguments to the loop’s state if necessary.
- Parameters
- Return type
- on_save_checkpoint()[source]¶
Called when saving a model checkpoint, use to persist loop state.
- Return type
- Returns
The current loop state.
- property done: bool¶
Returns
True
if the current iteration count reaches the number of dataloader batches.