Shortcuts

Source code for pytorch_lightning.utilities.argparse

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import os
from abc import ABC
from argparse import _ArgumentGroup, ArgumentParser, Namespace
from contextlib import suppress
from typing import Any, Callable, Dict, List, Tuple, Type, Union

import pytorch_lightning as pl
from pytorch_lightning.utilities.parsing import str_to_bool, str_to_bool_or_int, str_to_bool_or_str


[docs]class ParseArgparserDataType(ABC): def __init__(self, *_: Any, **__: Any) -> None: pass @classmethod def parse_argparser(cls, args: "ArgumentParser") -> Any: pass
[docs]def from_argparse_args( cls: Type[ParseArgparserDataType], args: Union[Namespace, ArgumentParser], **kwargs: Any ) -> ParseArgparserDataType: """Create an instance from CLI arguments. Eventually use varibles from OS environement which are defined as "PL_<CLASS-NAME>_<CLASS_ARUMENT_NAME>". Args: cls: Lightning class args: The parser or namespace to take arguments from. Only known arguments will be parsed and passed to the :class:`Trainer`. **kwargs: Additional keyword arguments that may override ones in the parser or namespace. These must be valid Trainer arguments. Example: >>> from pytorch_lightning import Trainer >>> parser = ArgumentParser(add_help=False) >>> parser = Trainer.add_argparse_args(parser) >>> parser.add_argument('--my_custom_arg', default='something') # doctest: +SKIP >>> args = Trainer.parse_argparser(parser.parse_args("")) >>> trainer = Trainer.from_argparse_args(args, logger=False) """ if isinstance(args, ArgumentParser): args = cls.parse_argparser(args) params = vars(args) # we only want to pass in valid Trainer args, the rest may be user specific valid_kwargs = inspect.signature(cls.__init__).parameters trainer_kwargs = {name: params[name] for name in valid_kwargs if name in params} trainer_kwargs.update(**kwargs) return cls(**trainer_kwargs)
[docs]def parse_argparser(cls: Type["pl.Trainer"], arg_parser: Union[ArgumentParser, Namespace]) -> Namespace: """Parse CLI arguments, required for custom bool types.""" args = arg_parser.parse_args() if isinstance(arg_parser, ArgumentParser) else arg_parser types_default = {arg: (arg_types, arg_default) for arg, arg_types, arg_default in get_init_arguments_and_types(cls)} modified_args = {} for k, v in vars(args).items(): if k in types_default and v is None: # We need to figure out if the None is due to using nargs="?" or if it comes from the default value arg_types, arg_default = types_default[k] if bool in arg_types and isinstance(arg_default, bool): # Value has been passed as a flag => It is currently None, so we need to set it to True # We always set to True, regardless of the default value. # Users must pass False directly, but when passing nothing True is assumed. # i.e. the only way to disable something that defaults to True is to use the long form: # "--a_default_true_arg False" becomes False, while "--a_default_false_arg" becomes None, # which then becomes True here. v = True modified_args[k] = v return Namespace(**modified_args)
[docs]def parse_env_variables(cls: Type["pl.Trainer"], template: str = "PL_%(cls_name)s_%(cls_argument)s") -> Namespace: """Parse environment arguments if they are defined. Example: >>> from pytorch_lightning import Trainer >>> parse_env_variables(Trainer) Namespace() >>> import os >>> os.environ["PL_TRAINER_GPUS"] = '42' >>> os.environ["PL_TRAINER_BLABLABLA"] = '1.23' >>> parse_env_variables(Trainer) Namespace(gpus=42) >>> del os.environ["PL_TRAINER_GPUS"] """ cls_arg_defaults = get_init_arguments_and_types(cls) env_args = {} for arg_name, _, _ in cls_arg_defaults: env = template % {"cls_name": cls.__name__.upper(), "cls_argument": arg_name.upper()} val = os.environ.get(env) if not (val is None or val == ""): # todo: specify the possible exception with suppress(Exception): # converting to native types like int/float/bool val = eval(val) env_args[arg_name] = val return Namespace(**env_args)
[docs]def get_init_arguments_and_types(cls: Any) -> List[Tuple[str, Tuple, Any]]: r"""Scans the class signature and returns argument names, types and default values. Returns: List with tuples of 3 values: (argument name, set with argument types, argument default value). Examples: >>> from pytorch_lightning import Trainer >>> args = get_init_arguments_and_types(Trainer) """ cls_default_params = inspect.signature(cls).parameters name_type_default = [] for arg in cls_default_params: arg_type = cls_default_params[arg].annotation arg_default = cls_default_params[arg].default try: arg_types = tuple(arg_type.__args__) except (AttributeError, TypeError): arg_types = (arg_type,) name_type_default.append((arg, arg_types, arg_default)) return name_type_default
def _get_abbrev_qualified_cls_name(cls: Any) -> str: assert isinstance(cls, type), repr(cls) if cls.__module__.startswith("pytorch_lightning."): # Abbreviate. return f"pl.{cls.__name__}" # Fully qualified. return f"{cls.__module__}.{cls.__qualname__}"
[docs]def add_argparse_args( cls: Type["pl.Trainer"], parent_parser: ArgumentParser, *, use_argument_group: bool = True ) -> Union[_ArgumentGroup, ArgumentParser]: r"""Extends existing argparse by default attributes for ``cls``. Args: cls: Lightning class parent_parser: The custom cli arguments parser, which will be extended by the class's default arguments. use_argument_group: By default, this is True, and uses ``add_argument_group`` to add a new group. If False, this will use old behavior. Returns: If use_argument_group is True, returns ``parent_parser`` to keep old workflows. If False, will return the new ArgumentParser object. Only arguments of the allowed types (str, float, int, bool) will extend the ``parent_parser``. Raises: RuntimeError: If ``parent_parser`` is not an ``ArgumentParser`` instance Examples: # Option 1: Default usage. >>> import argparse >>> from pytorch_lightning import Trainer >>> parser = argparse.ArgumentParser() >>> parser = Trainer.add_argparse_args(parser) >>> args = parser.parse_args([]) # Option 2: Disable use_argument_group (old behavior). >>> import argparse >>> from pytorch_lightning import Trainer >>> parser = argparse.ArgumentParser() >>> parser = Trainer.add_argparse_args(parser, use_argument_group=False) >>> args = parser.parse_args([]) """ if isinstance(parent_parser, _ArgumentGroup): raise RuntimeError("Please only pass an ArgumentParser instance.") if use_argument_group: group_name = _get_abbrev_qualified_cls_name(cls) parser: Union[_ArgumentGroup, ArgumentParser] = parent_parser.add_argument_group(group_name) else: parser = ArgumentParser(parents=[parent_parser], add_help=False) ignore_arg_names = ["self", "args", "kwargs"] if hasattr(cls, "get_deprecated_arg_names"): ignore_arg_names += cls.get_deprecated_arg_names() allowed_types = (str, int, float, bool) # Get symbols from cls or init function. for symbol in (cls, cls.__init__): args_and_types = get_init_arguments_and_types(symbol) args_and_types = [x for x in args_and_types if x[0] not in ignore_arg_names] if len(args_and_types) > 0: break args_help = _parse_args_from_docstring(cls.__init__.__doc__ or cls.__doc__ or "") for arg, arg_types, arg_default in args_and_types: arg_types = tuple(at for at in allowed_types if at in arg_types) if not arg_types: # skip argument with not supported type continue arg_kwargs: Dict[str, Any] = {} if bool in arg_types: arg_kwargs.update(nargs="?", const=True) # if the only arg type is bool if len(arg_types) == 1: use_type: Callable[[str], Union[bool, int, float, str]] = str_to_bool elif int in arg_types: use_type = str_to_bool_or_int elif str in arg_types: use_type = str_to_bool_or_str else: # filter out the bool as we need to use more general use_type = [at for at in arg_types if at is not bool][0] else: use_type = arg_types[0] if arg == "gpus" or arg == "tpu_cores": use_type = _gpus_allowed_type # hack for types in (int, float) if len(arg_types) == 2 and int in set(arg_types) and float in set(arg_types): use_type = _int_or_float_type # hack for track_grad_norm if arg == "track_grad_norm": use_type = float # hack for precision if arg == "precision": use_type = _precision_allowed_type parser.add_argument( f"--{arg}", dest=arg, default=arg_default, type=use_type, help=args_help.get(arg), **arg_kwargs ) if use_argument_group: return parent_parser return parser
def _parse_args_from_docstring(docstring: str) -> Dict[str, str]: arg_block_indent = None current_arg = "" parsed = {} for line in docstring.split("\n"): stripped = line.lstrip() if not stripped: continue line_indent = len(line) - len(stripped) if stripped.startswith(("Args:", "Arguments:", "Parameters:")): arg_block_indent = line_indent + 4 elif arg_block_indent is None: continue elif line_indent < arg_block_indent: break elif line_indent == arg_block_indent: current_arg, arg_description = stripped.split(":", maxsplit=1) parsed[current_arg] = arg_description.lstrip() elif line_indent > arg_block_indent: parsed[current_arg] += f" {stripped}" return parsed def _gpus_allowed_type(x: str) -> Union[int, str]: if "," in x: return str(x) return int(x) def _int_or_float_type(x: Union[int, float, str]) -> Union[int, float]: if "." in str(x): return float(x) return int(x) def _precision_allowed_type(x: Union[int, str]) -> Union[int, str]: """ >>> _precision_allowed_type("32") 32 >>> _precision_allowed_type("bf16") 'bf16' """ try: return int(x) except ValueError: return x

© Copyright Copyright (c) 2018-2023, William Falcon et al...

Built with Sphinx using a theme provided by Read the Docs.