Shortcuts

Source code for pytorch_lightning.loops.base

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from abc import ABC, abstractmethod
from typing import Any, Dict, Generic, Optional, TypeVar

from deprecate import void
from torchmetrics import Metric

import pytorch_lightning as pl
from pytorch_lightning.trainer.connectors.logger_connector.result import ResultCollection
from pytorch_lightning.trainer.progress import BaseProgress
from pytorch_lightning.utilities.exceptions import MisconfigurationException

T = TypeVar("T")  # the output type of `run`


[docs]class Loop(ABC, Generic[T]): """Basic Loops interface. All classes derived from this must implement the following properties and methods: * :attr:`done` (property): Condition to break the loop * :attr:`reset` (method): Resets the internal state between multiple calls of :attr:`run` * :attr:`advance` (method): Implements one step of the loop This class implements the following loop structure: .. code-block:: python on_run_start() while not done: on_advance_start() advance() on_advance_end() on_run_end() """ def __init__(self) -> None: self.restarting = False self._trainer: Optional["pl.Trainer"] = None @property def trainer(self) -> "pl.Trainer": if self._trainer is None: raise RuntimeError("The loop is not attached to a Trainer.") return self._trainer @trainer.setter def trainer(self, trainer: "pl.Trainer"): """Connects this loop's trainer and its children.""" if not isinstance(trainer, pl.Trainer): raise MisconfigurationException( f"Loop {self.__class__.__name__} should be connected to a `Trainer`, found: {trainer}." ) self._trainer = trainer for v in self.__dict__.values(): if isinstance(v, Loop): v.trainer = trainer @property @abstractmethod def done(self) -> bool: """Property indicating when the loop is finished. Example:: @property def done(self): return self.trainer.global_step >= self.trainer.max_steps """ @property def skip(self) -> bool: """Determine whether to return immediately from the call to :meth:`run`. Example:: @property def skip(self): return len(self.trainer.train_dataloader) == 0 """ return False
[docs] def connect(self, **kwargs: "Loop") -> None: """Optionally connect one or multiple loops to this one. Linked loops should form a tree. """
[docs] def on_skip(self) -> Optional[Any]: """The function to run when :meth:`run` should be skipped, determined by the condition in :attr:`skip`. Returns: the default output value of :meth:`on_run_end` """
[docs] def run(self, *args: Any, **kwargs: Any) -> T: """The main entry point to the loop. Will frequently check the :attr:`done` condition and calls :attr:`advance` until :attr:`done` evaluates to ``True``. Override this if you wish to change the default behavior. The default implementation is: Example:: def run(self, *args, **kwargs): if self.skip: return self.on_skip() self.reset() self.on_run_start(*args, **kwargs) while not self.done: self.advance(*args, **kwargs) output = self.on_run_end() return output Returns: The output of :attr:`on_run_end` (often outputs collected from each step of the loop) """ if self.skip: return self.on_skip() self.reset() self.on_run_start(*args, **kwargs) while not self.done: try: self.on_advance_start(*args, **kwargs) self.advance(*args, **kwargs) self.on_advance_end() self.restarting = False except StopIteration: break output = self.on_run_end() return output
[docs] @abstractmethod def reset(self) -> None: """Resets the internal state of the loop at the beginning of each call to :attr:`run`. Example:: def reset(self): # reset your internal state or add custom logic # if you expect run() to be called multiple times self.current_iteration = 0 self.outputs = [] """
[docs] def on_run_start(self, *args: Any, **kwargs: Any) -> None: """Hook to be called as the first thing after entering :attr:`run` (except the state reset). Accepts all arguments passed to :attr:`run`. """ void(*args, **kwargs)
[docs] def on_advance_start(self, *args: Any, **kwargs: Any) -> None: """Hook to be called each time before :attr:`advance` is called. Accepts all arguments passed to :attr`run`. """ void(*args, **kwargs)
[docs] @abstractmethod def advance(self, *args: Any, **kwargs: Any) -> None: """Performs a single step. Accepts all arguments passed to :attr:`run`. Example:: def advance(self, iterator): batch = next(iterator) loss = self.trainer.lightning_module.training_step(batch, batch_idx) ... """
[docs] def on_advance_end(self) -> None: """Hook to be called each time after :attr:`advance` is called."""
[docs] def on_run_end(self) -> T: """Hook to be called at the end of the run. Its return argument is returned from :attr:`run`. """
[docs] def teardown(self) -> None: """Use to release memory etc."""
[docs] def on_save_checkpoint(self) -> Dict: """Called when saving a model checkpoint, use to persist loop state. Returns: The current loop state. """ return {}
[docs] def on_load_checkpoint(self, state_dict: Dict) -> None: """Called when loading a model checkpoint, use to reload loop state."""
[docs] def state_dict(self, destination: Optional[Dict] = None, prefix: Optional[str] = "") -> Dict: """The state dict is determined by the state and progress of this loop and all its children. Args: destination: An existing dictionary to update with this loop's state. By default a new dictionary is returned. prefix: A prefix for each key in the state dictionary """ if destination is None: destination = {} destination[prefix + "state_dict"] = self.on_save_checkpoint() for k, v in self.__dict__.items(): key = prefix + k if isinstance(v, BaseProgress): destination[key] = v.state_dict() elif isinstance(v, Loop): v.state_dict(destination, key + ".") elif isinstance(v, ResultCollection): # sync / unsync metrics v.sync() destination[key] = v.state_dict() v.unsync() return destination
[docs] def load_state_dict( self, state_dict: Dict, prefix: str = "", metrics: Optional[Dict[str, Metric]] = None, ) -> None: """Loads the state of this loop and all its children.""" self._load_from_state_dict(state_dict.copy(), prefix, metrics) for k, v in self.__dict__.items(): if isinstance(v, Loop): v.load_state_dict(state_dict.copy(), prefix + k + ".")
def _load_from_state_dict(self, state_dict: Dict, prefix: str, metrics: Optional[Dict[str, Metric]] = None) -> None: for k, v in self.__dict__.items(): key = prefix + k if isinstance(v, BaseProgress): v.load_state_dict(state_dict[key]) elif ( isinstance(v, ResultCollection) and self.trainer is not None and getattr(self.trainer, "lightning_module", None) is not None ): metric_attributes = { name: module for name, module in self.trainer.lightning_module.named_modules() if isinstance(module, Metric) } if metrics: metric_attributes.update(metrics) # The `ResultCollection` objects have 2 types of metrics: `Tensor` and `torchmetrics.Metric`. # When creating a checkpoint, the `Metric`s are dropped from the loop `state_dict` to serialize only # Python primitives. However, their states are saved with the model's `state_dict`. # On reload, we need to re-attach the `Metric`s back to the `ResultCollection`. # The references are provided through the `metric_attributes` dictionary. v.load_state_dict( state_dict[prefix + k], metrics=metric_attributes, sync_fn=self.trainer.training_type_plugin.reduce ) if not self.trainer.is_global_zero: v.reset(metrics=False) self.on_load_checkpoint(state_dict[prefix + "state_dict"]) self.restarting = True

© Copyright Copyright (c) 2018-2023, William Falcon et al...

Built with Sphinx using a theme provided by Read the Docs.