Source code for pytorch_lightning.loggers.test_tube
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Test Tube Logger
----------------
"""
from argparse import Namespace
from typing import Any, Dict, Optional, Union
import pytorch_lightning as pl
from pytorch_lightning.loggers.base import LightningLoggerBase, rank_zero_experiment
from pytorch_lightning.utilities import _module_available, rank_zero_deprecation, rank_zero_warn
from pytorch_lightning.utilities.distributed import rank_zero_only
_TESTTUBE_AVAILABLE = _module_available("test_tube")
if _TESTTUBE_AVAILABLE:
from test_tube import Experiment
else:
Experiment = None
[docs]class TestTubeLogger(LightningLoggerBase):
r"""
Log to local file system in `TensorBoard <https://www.tensorflow.org/tensorboard>`_ format
but using a nicer folder structure (see `full docs <https://williamfalcon.github.io/test-tube>`_).
Warning:
The test-tube package is no longer maintained and PyTorch Lightning will remove the :class:´TestTubeLogger´
in v1.7.0.
Install it with pip:
.. code-block:: bash
pip install test_tube
.. code-block:: python
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import TestTubeLogger
logger = TestTubeLogger("tt_logs", name="my_exp_name")
trainer = Trainer(logger=logger)
Use the logger anywhere in your :class:`~pytorch_lightning.core.lightning.LightningModule` as follows:
.. code-block:: python
from pytorch_lightning import LightningModule
class LitModel(LightningModule):
def training_step(self, batch, batch_idx):
# example
self.logger.experiment.whatever_method_summary_writer_supports(...)
def any_lightning_module_function_or_hook(self):
self.logger.experiment.add_histogram(...)
Args:
save_dir: Save directory
name: Experiment name. Defaults to ``'default'``.
description: A short snippet about this experiment
debug: If ``True``, it doesn't log anything.
version: Experiment version. If version is not specified the logger inspects the save
directory for existing versions, then automatically assigns the next available version.
create_git_tag: If ``True`` creates a git tag to save the code used in this experiment.
log_graph: Adds the computational graph to tensorboard. This requires that
the user has defined the `self.example_input_array` attribute in their
model.
prefix: A string to put at the beginning of metric keys.
Raises:
ModuleNotFoundError:
If required TestTube package is not installed on the device.
"""
__test__ = False
LOGGER_JOIN_CHAR = "-"
def __init__(
self,
save_dir: str,
name: str = "default",
description: Optional[str] = None,
debug: bool = False,
version: Optional[int] = None,
create_git_tag: bool = False,
log_graph: bool = False,
prefix: str = "",
):
rank_zero_deprecation(
"The TestTubeLogger is deprecated since v1.5 and will be removed in v1.7. We recommend switching to the"
" `pytorch_lightning.loggers.TensorBoardLogger` as an alternative."
)
if Experiment is None:
raise ModuleNotFoundError(
"You want to use `test_tube` logger which is not installed yet,"
" install it with `pip install test-tube`."
)
super().__init__()
self._save_dir = save_dir
self._name = name
self.description = description
self.debug = debug
self._version = version
self.create_git_tag = create_git_tag
self._log_graph = log_graph
self._prefix = prefix
self._experiment = None
@property
@rank_zero_experiment
def experiment(self) -> Experiment:
r"""
Actual TestTube object. To use TestTube features in your
:class:`~pytorch_lightning.core.lightning.LightningModule` do the following.
Example::
self.logger.experiment.some_test_tube_function()
"""
if self._experiment is not None:
return self._experiment
self._experiment = Experiment(
save_dir=self.save_dir,
name=self._name,
debug=self.debug,
version=self.version,
description=self.description,
create_git_tag=self.create_git_tag,
rank=rank_zero_only.rank,
)
return self._experiment
[docs] @rank_zero_only
def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None:
# TODO: HACK figure out where this is being set to true
self.experiment.debug = self.debug
params = self._convert_params(params)
params = self._flatten_dict(params)
self.experiment.argparse(Namespace(**params))
[docs] @rank_zero_only
def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None:
# TODO: HACK figure out where this is being set to true
metrics = self._add_prefix(metrics)
self.experiment.debug = self.debug
self.experiment.log(metrics, global_step=step)
[docs] @rank_zero_only
def log_graph(self, model: "pl.LightningModule", input_array=None):
if self._log_graph:
if input_array is None:
input_array = model.example_input_array
if input_array is not None:
self.experiment.add_graph(model, model._apply_batch_transfer_handler(input_array))
else:
rank_zero_warn(
"Could not log computational graph since neither the"
" `model.example_input_array` attribute is set nor"
" `input_array` was given",
UserWarning,
)
[docs] @rank_zero_only
def save(self) -> None:
super().save()
# TODO: HACK figure out where this is being set to true
self.experiment.debug = self.debug
self.experiment.save()
[docs] @rank_zero_only
def finalize(self, status: str) -> None:
super().finalize(status)
# TODO: HACK figure out where this is being set to true
self.experiment.debug = self.debug
self.save()
self.close()
[docs] @rank_zero_only
def close(self) -> None:
super().save()
# TODO: HACK figure out where this is being set to true
self.experiment.debug = self.debug
if not self.debug:
exp = self.experiment
exp.close()
@property
def save_dir(self) -> Optional[str]:
"""Gets the save directory.
Returns:
The path to the save directory.
"""
return self._save_dir
@property
def name(self) -> str:
"""Gets the experiment name.
Returns:
The experiment name if the experiment exists, else the name specified in the constructor.
"""
if self._experiment is None:
return self._name
return self.experiment.name
@property
def version(self) -> int:
"""Gets the experiment version.
Returns:
The experiment version if the experiment exists, else the next version.
"""
if self._experiment is None:
return self._version
return self.experiment.version
# Test tube experiments are not pickleable, so we need to override a few
# methods to get DDP working. See
# https://docs.python.org/3/library/pickle.html#handling-stateful-objects
# for more info.
def __getstate__(self) -> Dict[Any, Any]:
state = self.__dict__.copy()
state["_experiment"] = self.experiment.get_meta_copy()
return state
def __setstate__(self, state: Dict[Any, Any]):
self._experiment = state["_experiment"].get_non_ddp_exp()
del state["_experiment"]
self.__dict__.update(state)