Shortcuts

Source code for pytorch_lightning.callbacks.xla_stats_monitor

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
XLA Stats Monitor
=================

Monitor and logs XLA stats during training.

"""
import time

from pytorch_lightning.callbacks.base import Callback
from pytorch_lightning.utilities import _TPU_AVAILABLE, DeviceType, rank_zero_deprecation, rank_zero_info
from pytorch_lightning.utilities.exceptions import MisconfigurationException

if _TPU_AVAILABLE:
    import torch_xla.core.xla_model as xm


[docs]class XLAStatsMonitor(Callback): r""" .. deprecated:: v1.5 The `XLAStatsMonitor` callback was deprecated in v1.5 and will be removed in v1.7. Please use the `DeviceStatsMonitor` callback instead. Automatically monitors and logs XLA stats during training stage. ``XLAStatsMonitor`` is a callback and in order to use it you need to assign a logger in the ``Trainer``. Args: verbose: Set to ``True`` to print average peak and free memory, and epoch time every epoch. Raises: MisconfigurationException: If not running on TPUs, or ``Trainer`` has no logger. Example:: >>> from pytorch_lightning import Trainer >>> from pytorch_lightning.callbacks import XLAStatsMonitor >>> xla_stats = XLAStatsMonitor() # doctest: +SKIP >>> trainer = Trainer(callbacks=[xla_stats]) # doctest: +SKIP """ def __init__(self, verbose: bool = True) -> None: super().__init__() rank_zero_deprecation( "The `XLAStatsMonitor` callback was deprecated in v1.5 and will be removed in v1.7." " Please use the `DeviceStatsMonitor` callback instead." ) if not _TPU_AVAILABLE: raise MisconfigurationException("Cannot use XLAStatsMonitor with TPUs are not available") self._verbose = verbose
[docs] def on_train_start(self, trainer, pl_module) -> None: if not trainer.logger: raise MisconfigurationException("Cannot use XLAStatsMonitor callback with Trainer that has no logger.") if trainer._device_type != DeviceType.TPU: raise MisconfigurationException( "You are using XLAStatsMonitor but are not running on TPU" f" since `tpu_cores` attribute in Trainer is set to {trainer.tpu_cores}." ) memory_info = xm.get_memory_info(pl_module.device) total_memory = trainer.training_type_plugin.reduce(memory_info["kb_total"]) * 0.001 rank_zero_info(f"Average Total memory: {total_memory:.2f} MB")
[docs] def on_train_epoch_start(self, trainer, pl_module) -> None: self._start_time = time.time()
[docs] def on_train_epoch_end(self, trainer, pl_module) -> None: logs = {} memory_info = xm.get_memory_info(pl_module.device) epoch_time = time.time() - self._start_time free_memory = memory_info["kb_free"] peak_memory = memory_info["kb_total"] - free_memory free_memory = trainer.training_type_plugin.reduce(free_memory) * 0.001 peak_memory = trainer.training_type_plugin.reduce(peak_memory) * 0.001 epoch_time = trainer.training_type_plugin.reduce(epoch_time) logs["avg. free memory (MB)"] = free_memory logs["avg. peak memory (MB)"] = peak_memory trainer.logger.log_metrics(logs, step=trainer.current_epoch) if self._verbose: rank_zero_info(f"Average Epoch time: {epoch_time:.2f} seconds") rank_zero_info(f"Average Peak memory: {peak_memory:.2f} MB") rank_zero_info(f"Average Free memory: {free_memory:.2f} MB")

© Copyright Copyright (c) 2018-2023, William Falcon et al...

Built with Sphinx using a theme provided by Read the Docs.