Hi,
I’m trying to implement the TadGAN model for time series anomaly detection with lighting and I find it really difficult. The issue is this training loop:
for epoch in range(n_epochs):
logging.debug(‘Epoch {}’.format(epoch))
n_critics = 5
cx_nc_loss = list()
cz_nc_loss = list()
for i in range(n_critics):
cx_loss = list()
cz_loss = list()
for batch, sample in enumerate(train_loader):
loss = critic_x_iteration(sample)
cx_loss.append(loss)
loss = critic_z_iteration(sample)
cz_loss.append(loss)
for batch, sample in enumerate(train_loader):
enc_loss = encoder_iteration(sample)
dec_loss = decoder_iteration(sample)
encoder_loss.append(enc_loss)
decoder_loss.append(dec_loss)
…
How I implement it within training_step with the extra loop “for i in range(n_critics) ?”
Thanks a lot,
Roberto