Loading/saving state_dict as a regular pytorch net

Hi,
When trying to load a trained model using a torch.load, I get an error stating the lightning model could not be read:
AttributeError: Can’t get attribute ‘MyLightningModel’ on <module ‘main’>
As if the ckpt file is not looking to be opened using the lightning model?
How can I work around this? Or how to change the checkpointing so that in the future, I will have a checkpoint of the bare torch state_dict separate?

Hi @or_ram

Here is a simple example to do this:

import torch
from torch.utils.data import DataLoader, Dataset

from lightning.pytorch import LightningModule, Trainer


class RandomDataset(Dataset):
    def __init__(self, size, length):
        self.len = length
        self.data = torch.randn(length, size)

    def __getitem__(self, index):
        return self.data[index]

    def __len__(self):
        return self.len


class BoringModel(LightningModule):
    def __init__(self):
        super().__init__()
        self.layer = torch.nn.Linear(32, 2)

    def forward(self, x):
        return self.layer(x)

    def training_step(self, batch, batch_idx):
        loss = self(batch).sum()
        self.log("train_loss", loss)
        return {"loss": loss}

    def configure_optimizers(self):
        return torch.optim.SGD(self.layer.parameters(), lr=0.1)


def run():
    # 1. Train using Trainer and let it save checkpoints
    train_data = DataLoader(RandomDataset(32, 64), batch_size=2)
    model = BoringModel()
    trainer = Trainer(max_epochs=1)
    trainer.fit(model, train_dataloaders=train_data)

    # 2. Load the checkpoint file with torch.load()
    checkpoint_file = trainer.checkpoint_callback.best_model_path
    checkpoint = torch.load(checkpoint_file)
    # You can inspect the checkpoint
    print(list(checkpoint.keys()))

    # 3. Load the model from the checkpoint
    model = BoringModel()
    model.load_state_dict(checkpoint["state_dict"])


if __name__ == "__main__":
    run()

Here are some more docs with convenience functions:
https://lightning.ai/docs/pytorch/stable/common/checkpointing_basic.html#lightningmodule-from-checkpoint