Getting accuracy print

I am unable to get accuracy and validation loss getting print.
Here is the code

def training_step(self,batch,batch_idx):
    input_ids,attention_mask,label=batch
    out=self.forward(input_ids,attention_mask)
    loss=torch.nn.functional.cross_entropy(out,label,self.class_weights)
    pred=torch.max(out,dim=1)[1]
    return {'loss':loss}

def validation_step(self,batch,batch_idx):
    input_ids,attention_mask,label=batch
    out=self(input_ids,attention_mask)
    loss=torch.nn.functional.cross_entropy(out,label,self.class_weights)
    pred=torch.max(out,dim=1)[1]
    return {'val_loss':loss,'pred':pred.detach(),'label':label.detach()}

  def validaton_epoch_end(self,outputs):
    avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
    pred=torch.cat([x['pred'] for x in outputs])
    label=torch.cat([x['label'] for x in outputs])
    acc=self.metric(pred,label)
    print('accuracy: ', acc)

model = OurModel().to(device)

Trainer

trainer = Trainer(max_epochs=5, min_epochs=1, auto_lr_find=False, auto_scale_batch_size=False,tpu_cores=1,precision=16,
                      progress_bar_refresh_rate=10, 
                  )
trainer.tune(model)
trainer.fit(model)

What I want is to print validation accuracy and loss after each epoch.

Here is screenshot of what I am getting right now

I also tried this

def training_step(self,batch,batch_idx):
    input_ids,attention_mask,label=batch
    out=self.forward(input_ids,attention_mask)
    loss=torch.nn.functional.cross_entropy(out,label,self.class_weights)
    pred=torch.max(out,dim=1)[1]
    train_acc=self.metric(pred,label)
    self.log('train/acc', train_acc, on_epoch=True)
    self.log('train/loss', loss, on_epoch=True)
    return loss

def validation_step(self,batch,batch_idx):
    input_ids,attention_mask,label=batch
    out=self(input_ids,attention_mask)
    loss=torch.nn.functional.cross_entropy(out,label,self.class_weights)
    pred=torch.max(out,dim=1)[1]
    valid_acc=self.metric(pred,label)
    self.log('vall/acc', valid_acc, on_epoch=True)
    self.log('vall/loss', loss, on_epoch=True)
    return loss