PredictionEpochLoop
class pytorch_lightning.loops.epoch. PredictionEpochLoop [source]
Bases: pytorch_lightning.loops.loop.Loop
Loop performing prediction on arbitrary sequentially used dataloaders.
advance ( dataloader_iter , dataloader_idx , dl_max_batches , num_dataloaders ) [source]
Runs one prediction step.
Parameters
dataloader_iter (Iterator
) – the iterator over the current dataloader
dataloader_idx (int
) – the index of the current dataloader
dl_max_batches (int
) – the maximum number of batches the current loader can produce
num_dataloaders (int
) – the total number of dataloaders
Return type
None
connect ( ** kwargs ) [source]
Optionally connect one or multiple loops to this one.
Linked loops should form a tree.
Return type
None
on_run_end ( ) [source]
Returns the predictions and the corresponding batch indices.
Return type
Tuple
[List
[Any
], List
[List
[int
]]]
on_run_start ( dataloader_iter , dataloader_idx , dl_max_batches , num_dataloaders ) [source]
Prepares the loops internal state.
Parameters
dataloader_iter (Iterator
) – the iterator over the current dataloader
dataloader_idx (int
) – the index of the current dataloader
dl_max_batches (int
) – the maximum number of batches the current loader can produce
num_dataloaders (int
) – the total number of dataloaders
Return type
None
reset ( ) [source]
Resets the loops internal state.
Return type
None
property done : bool
Ends prediction when the iteration count exceeds the total number of available batches.
Return type
bool
property should_store_predictions : bool
Whether the predictions should be stored for later usage (e.g. aggregation or returning)
Return type
bool
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. Read PyTorch Lightning's Privacy Policy .