Shortcuts

Source code for pytorch_lightning.strategies.hpu_parallel

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
from typing import Any, Callable, Dict, List, Optional, Union

import torch.distributed
from torch.nn import Module
from torch.optim.optimizer import Optimizer

import pytorch_lightning as pl
from lightning_fabric.plugins import CheckpointIO, ClusterEnvironment
from lightning_fabric.utilities.distributed import group as _group
from pytorch_lightning.accelerators.hpu import _HPU_AVAILABLE
from pytorch_lightning.overrides import LightningDistributedModule
from pytorch_lightning.plugins.io.hpu_plugin import HPUCheckpointIO
from pytorch_lightning.plugins.io.wrapper import _WrappingCheckpointIO
from pytorch_lightning.plugins.precision import PrecisionPlugin
from pytorch_lightning.strategies.ddp import DDPStrategy
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.imports import _TORCH_LESSER_EQUAL_1_10_2
from pytorch_lightning.utilities.types import STEP_OUTPUT

if _HPU_AVAILABLE:
    import habana_frameworks.torch.core as htcore
    import habana_frameworks.torch.distributed.hccl  # noqa: F401

log = logging.getLogger(__name__)


[docs]class HPUParallelStrategy(DDPStrategy): """Strategy for distributed training on multiple HPU devices.""" strategy_name = "hpu_parallel" def __init__( self, accelerator: Optional["pl.accelerators.Accelerator"] = None, parallel_devices: Optional[List[torch.device]] = None, cluster_environment: Optional[ClusterEnvironment] = None, checkpoint_io: Optional[CheckpointIO] = None, precision_plugin: Optional[PrecisionPlugin] = None, ddp_comm_state: Optional[object] = None, ddp_comm_hook: Optional[Callable] = None, ddp_comm_wrapper: Optional[Callable] = None, model_averaging_period: Optional[int] = None, process_group_backend: Optional[str] = "hccl", **kwargs: Any, ) -> None: if not _HPU_AVAILABLE: raise MisconfigurationException("`HPUParallelStrategy` requires HPU devices to run") super().__init__( accelerator=accelerator, parallel_devices=parallel_devices, cluster_environment=cluster_environment, checkpoint_io=checkpoint_io, precision_plugin=precision_plugin, ddp_comm_state=ddp_comm_state, ddp_comm_hook=ddp_comm_hook, ddp_comm_wrapper=ddp_comm_wrapper, model_averaging_period=model_averaging_period, process_group_backend=process_group_backend, **kwargs, ) @property def checkpoint_io(self) -> CheckpointIO: if self._checkpoint_io is None: self._checkpoint_io = HPUCheckpointIO() elif isinstance(self._checkpoint_io, _WrappingCheckpointIO): self._checkpoint_io.checkpoint_io = HPUCheckpointIO() return self._checkpoint_io @checkpoint_io.setter def checkpoint_io(self, io: Optional[CheckpointIO]) -> None: self._checkpoint_io = io
[docs] def setup_environment(self) -> None: os.environ["ID"] = str(self.local_rank) if self._process_group_backend == "hccl": # this env is used in overrides to check the backend initiated os.environ["HCCL_DISTRIBUTED_BACKEND"] = str(1) super().setup_environment()
def determine_ddp_device_ids(self) -> None: return None def _pre_configure_ddp(self) -> None: # if unset, default `find_unused_parameters` `True` # Many models require setting this parameter to True, as there are corner cases # when not all parameter backward hooks are fired by the autograd engine even if require_grad is set to True. # This flag does come with a performance hit, so it is suggested to disable in cases where it is possible. self._ddp_kwargs["find_unused_parameters"] = self._ddp_kwargs.get("find_unused_parameters", True) self._static_graph = False static_graph = self._ddp_kwargs.get("static_graph") if static_graph: # when _set_static_graph() is called find_unused_parameters does not have any significance. # Resetting the value of find_unused_parameters to False which is the default value to DDP self._ddp_kwargs["find_unused_parameters"] = False self._static_graph = True if static_graph is not None: # DDP does not accept static_graph as a parameter, hence removing it from the list del self._ddp_kwargs["static_graph"] def configure_ddp(self) -> None: # DDP does not accept static graph as param with torch < 1.11 if _TORCH_LESSER_EQUAL_1_10_2: log.detail(f"{self.__class__.__name__}: configuring DistributedDataParallel") self._pre_configure_ddp() self.model = self._setup_model(LightningDistributedModule(self.model)) # type: ignore if self.root_device.type == "hpu" and self._static_graph: self._model._set_static_graph() # type: ignore self._register_ddp_hooks() else: super().configure_ddp()
[docs] def broadcast(self, obj: object, src: int = 0) -> object: # type: ignore obj = [obj] if self.global_rank != src: obj = [None] _hpu_broadcast_object_list(obj, src, group=_group.WORLD) return obj[0]
def on_after_backward(self) -> None: # Break lazy accumulation of graph after fwd+bwd htcore.mark_step()
[docs] def optimizer_step( self, optimizer: Optimizer, opt_idx: int, closure: Callable[[], Any], model: Optional[Union["pl.LightningModule", Module]] = None, **kwargs: Any, ) -> Any: optimizer_output = super().optimizer_step(optimizer, opt_idx, closure, model, **kwargs) # Break lazy accumulation of graph after optimizer htcore.mark_step() return optimizer_output
def validation_step_end(self, step_output: STEP_OUTPUT) -> STEP_OUTPUT: # Break lazy accumulation of graph after every step htcore.mark_step() return step_output def test_step_end(self, step_output: STEP_OUTPUT) -> STEP_OUTPUT: # Break lazy accumulation of graph after every step htcore.mark_step() return step_output @classmethod def register_strategies(cls, strategy_registry: Dict) -> None: strategy_registry.register( cls.strategy_name, cls, description=f"{cls.__class__.__name__}", )
[docs] def teardown(self) -> None: super().teardown() # Was set to local rank os.environ.pop("ID", None) os.environ.pop("HCCL_DISTRIBUTED_BACKEND", None)
# The code underneath is taken from PyTorch `torch/distributed/distributed_c10d.py` # the distributed backend and tensor type updates for habana backend is done here before broadcast def _hpu_broadcast_object_list(object_list, src=0, group=None, device=None): # type: ignore from torch.distributed import _rank_not_in_group, Backend, broadcast, get_backend, get_rank from torch.distributed.distributed_c10d import _object_to_tensor, _tensor_to_object if _rank_not_in_group(group): return my_rank = get_rank() # Serialize object_list elements to tensors on src rank. if my_rank == src: tensor_list, size_list = zip(*[_object_to_tensor(obj, device) for obj in object_list]) object_sizes_tensor = torch.cat(size_list) else: object_sizes_tensor = torch.empty(len(object_list), dtype=torch.long) # Current device selection. # To preserve backwards compatibility, ``device`` is default to ``None`` # in which case we run current logic of device selection, i.e. # ``current_device`` is CUDA if backend is NCCL otherwise CPU device. In the # case it is not ``None`` we move the size and object tensors to be # broadcasted to this device. group_backend = get_backend(group) is_nccl_backend = group_backend == Backend.NCCL is_hpu_backend = os.environ.get("HCCL_DISTRIBUTED_BACKEND") == "1" if device is not None: if is_nccl_backend and device.type != "cuda": raise ValueError("device type must be cuda for nccl backend") current_device = device else: current_device = torch.device("cpu") if is_nccl_backend: # See note about using torch.cuda.current_device() here in # docstring. We cannot simply use my_rank since rank == device is # not necessarily true. current_device = torch.device("cuda", torch.cuda.current_device()) if is_nccl_backend: object_sizes_tensor = object_sizes_tensor.to(current_device) elif is_hpu_backend: current_device = torch.device("hpu") # Workaround: HPU doesn't not support long tensors for collectives if (object_sizes_tensor.type() == "torch.LongTensor") or (object_sizes_tensor.type() == "torch.hpu.LongTensor"): object_sizes_tensor = object_sizes_tensor.int() else: print("unhandled hpu object_sizes_tensor type :: ", object_sizes_tensor.type()) object_sizes_tensor = object_sizes_tensor.to(current_device) # Broadcast object sizes broadcast(object_sizes_tensor, src=src, group=group) # Concatenate and broadcast serialized object tensors if my_rank == src: object_tensor = torch.cat(tensor_list) else: object_tensor = torch.empty( torch.sum(object_sizes_tensor).int().item(), dtype=torch.uint8, ) if is_nccl_backend or is_hpu_backend: object_tensor = object_tensor.to(current_device) broadcast(object_tensor, src=src, group=group) # Deserialize objects using their stored sizes. offset = 0 if my_rank != src: for i, obj_size in enumerate(object_sizes_tensor): obj_view = object_tensor[offset : offset + obj_size] obj_view = obj_view.type(torch.uint8) if obj_view.device != torch.device("cpu"): obj_view = obj_view.cpu() offset += obj_size object_list[i] = _tensor_to_object(obj_view, obj_size)

© Copyright Copyright (c) 2018-2023, Lightning AI et al...

Built with Sphinx using a theme provided by Read the Docs.