Source code for pytorch_lightning.plugins.precision.deepspeed
# Copyright The Lightning AI team.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.fromtypingimportAny,Callable,cast,Optional,TYPE_CHECKING,Unionfromlightning_utilities.core.importsimportRequirementCachefromtorchimportTensorfromtorch.optimimportLBFGS,Optimizerfromtyping_extensionsimportget_args,Literalimportpytorch_lightningasplfromlightning_fabric.utilities.typesimportSteppablefrompytorch_lightning.plugins.precision.apex_ampimport_APEX_AVAILABLEfrompytorch_lightning.plugins.precision.precision_pluginimportPrecisionPluginfrompytorch_lightning.utilitiesimportGradClipAlgorithmTypefrompytorch_lightning.utilities.exceptionsimportMisconfigurationExceptionfrompytorch_lightning.utilities.model_helpersimportis_overriddenfrompytorch_lightning.utilities.rank_zeroimportrank_zero_deprecation,WarningCache_DEEPSPEED_AVAILABLE=RequirementCache("deepspeed")ifTYPE_CHECKINGand_DEEPSPEED_AVAILABLE:importdeepspeedwarning_cache=WarningCache()_PRECISION_INPUT_INT=Literal[32,16]_PRECISION_INPUT_STR=Literal["32","16","bf16"]_PRECISION_INPUT=Union[_PRECISION_INPUT_INT,_PRECISION_INPUT_STR]
[docs]classDeepSpeedPrecisionPlugin(PrecisionPlugin):"""Precision plugin for DeepSpeed integration. Args: precision: Full precision (32), half precision (16) or bfloat16 precision (bf16). Raises: ValueError: If unsupported ``precision`` is provided. """def__init__(self,precision:Literal["32",32,"16",16,"bf16"],amp_type:Optional[str]=None,amp_level:Optional[str]=None,)->None:ifamp_type=="apex":# TODO: remove in v2.0.0rank_zero_deprecation("The NVIDIA/apex AMP implementation has been deprecated upstream. Consequently, its integration inside"" PyTorch Lightning has been deprecated in v1.9.0. Support for using it through the DeepSpeed"" implementation will be removed in v2.0.0.")ifnot_APEX_AVAILABLE:raiseMisconfigurationException("You have asked for Apex AMP but `apex` is not installed."" Install `apex` using this guide: https://github.com/NVIDIA/apex")amp_level=amp_levelor"O2"elifamp_levelisnotNone:raiseValueError(f"`{type(self).__name__}(amp_level={amp_level!r})` is only relevant when using NVIDIA/apex")ifamp_typeisNone:amp_type="native"else:rank_zero_deprecation(f"Passing `{type(self).__name__}(amp_type={amp_type!r})` been deprecated in v1.9.0 and will be removed"f" in v2.0.0. This argument is no longer necessary.")supported_precision=get_args(_PRECISION_INPUT_STR)+get_args(_PRECISION_INPUT_INT)ifprecisionnotinsupported_precision:raiseValueError(f"`Trainer(strategy='deepspeed', precision={precision!r})` is not supported."f" `precision` must be one of: {supported_precision}.")self.precision=cast(_PRECISION_INPUT_STR,str(precision))self.amp_type=amp_typeself.amp_level=amp_level
[docs]defbackward(# type: ignore[override]self,tensor:Tensor,model:"pl.LightningModule",optimizer:Optional[Steppable],optimizer_idx:Optional[int],*args:Any,**kwargs:Any,)->None:r"""Performs back-propagation using DeepSpeed's engine. Args: tensor: the loss tensor model: the model to be optimized optimizer: ignored for DeepSpeed optimizer_idx: ignored for DeepSpeed \*args: additional positional arguments for the :meth:`deepspeed.DeepSpeedEngine.backward` call \**kwargs: additional keyword arguments for the :meth:`deepspeed.DeepSpeedEngine.backward` call """ifis_overridden("backward",model):warning_cache.warn("You have overridden the `LightningModule.backward` hook but it will be ignored since DeepSpeed handles"" the backward logic internally.")deepspeed_engine:"deepspeed.DeepSpeedEngine"=model.trainer.modeldeepspeed_engine.backward(tensor,*args,**kwargs)
[docs]defoptimizer_step(# type: ignore[override]self,optimizer:Steppable,model:"pl.LightningModule",optimizer_idx:int,closure:Callable[[],Any],**kwargs:Any,)->Any:ifisinstance(optimizer,LBFGS):raiseMisconfigurationException(f"DeepSpeed and the LBFGS optimizer are not compatible (optimizer {optimizer_idx}).")closure_result=closure()self._after_closure(model,optimizer,optimizer_idx)skipped_backward=closure_resultisNone# in manual optimization, the closure does not return a valueifmodel.automatic_optimizationandskipped_backward:raiseMisconfigurationException("Skipping backward by returning `None` from your `training_step` is not supported by `DeepSpeed`")# DeepSpeed handles the optimizer step internallydeepspeed_engine:"deepspeed.DeepSpeedEngine"=model.trainer.modelreturndeepspeed_engine.step(**kwargs)
def_track_grad_norm(self,trainer:"pl.Trainer")->None:iftrainer.track_grad_norm==-1:return# the gradients are not available in the model due to gradient partitioning in zero stage >= 2warning_cache.warn(f"You set `Trainer(track_grad_norm={trainer.track_grad_norm!r})' but this is not supported for DeepSpeed."" The setting will be ignored.")
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. Read PyTorch Lightning's Privacy Policy.