Source code for pytorch_lightning.plugins.precision.colossalai
# Copyright The Lightning AI team.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.fromtypingimportAny,Callable,cast,Optional,UnionfromtorchimportTensorfromtorch.optimimportOptimizerfromtyping_extensionsimportLiteralimportpytorch_lightningasplfromlightning_fabric.utilities.typesimportSteppablefrompytorch_lightning.plugins.precision.precision_pluginimportPrecisionPluginfrompytorch_lightning.utilities.rank_zeroimportWarningCachewarning_cache=WarningCache()
[docs]classColossalAIPrecisionPlugin(PrecisionPlugin):"""Precision plugin for ColossalAI integration. Args: precision: Half precision (16). Raises: ValueError: If precison is not 16. """def__init__(self,precision:Literal["16",16]=16)->None:ifprecisionnotin("16",16):raiseValueError(f"`Trainer(strategy='colossalai', precision={precision!r})` is not supported."" Consider setting `precision=16`.")self.precision=cast(Literal["16"],str(precision))
[docs]defclip_grad_by_value(self,optimizer:Optimizer,clip_val:Union[int,float])->None:raiseNotImplementedError("`clip_grad_by_value` is not supported by `ColossalAI`")
[docs]defoptimizer_step(# type: ignore[override]self,optimizer:Steppable,model:"pl.LightningModule",optimizer_idx:int,closure:Callable[[],Any],**kwargs:Any,)->Any:closure_result=closure()self._after_closure(model,optimizer,optimizer_idx)skipped_backward=closure_resultisNoneifisinstance(model,pl.LightningModule)andmodel.automatic_optimizationandskipped_backward:raiseValueError("Skipping backward by returning `None` from your `training_step` is not supported by `ColossalAI`.")optimizer.step()
def_track_grad_norm(self,trainer:"pl.Trainer")->None:iftrainer.track_grad_norm==-1:return# the gradients are not available in the model due to gradient partitioning in zero stage >= 2warning_cache.warn(f"You set `Trainer(track_grad_norm={trainer.track_grad_norm!r})' but this is not supported for ColossalAI."" The setting will be ignored.")
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. Read PyTorch Lightning's Privacy Policy.