# Copyright The Lightning AI team.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License."""Abstract base class used to build new loggers."""importfunctoolsimportoperatorfromabcimportABCfromcollectionsimportdefaultdictfromtypingimportAny,Callable,Dict,Mapping,Optional,Sequenceimportnumpyasnpfromlightning_fabric.loggersimportLoggerasFabricLoggerfromlightning_fabric.loggers.loggerimport_DummyExperimentasDummyExperiment# for backward compatibilityfromlightning_fabric.loggers.loggerimportrank_zero_experiment# noqa: F401 # for backward compatibilityfrompytorch_lightning.callbacks.model_checkpointimportModelCheckpoint
[docs]classLogger(FabricLogger,ABC):"""Base class for experiment loggers."""
[docs]defafter_save_checkpoint(self,checkpoint_callback:ModelCheckpoint)->None:"""Called after model checkpoint callback saves a new checkpoint. Args: checkpoint_callback: the model checkpoint callback instance """pass
@propertydefsave_dir(self)->Optional[str]:"""Return the root directory where experiment logs get saved, or `None` if the logger does not save data locally."""returnNone
[docs]classDummyLogger(Logger):"""Dummy logger for internal use. It is useful if we want to disable user's logger for a feature, but still ensure that user code can run """def__init__(self)->None:super().__init__()self._experiment=DummyExperiment()@propertydefexperiment(self)->DummyExperiment:"""Return the experiment object associated with this logger."""returnself._experiment
@propertydefname(self)->str:"""Return the experiment name."""return""@propertydefversion(self)->str:"""Return the experiment version."""return""def__getitem__(self,idx:int)->"DummyLogger":# enables self.logger[0].experiment.add_image(...)returnselfdef__getattr__(self,name:str)->Callable:"""Allows the DummyLogger to be called with arbitrary methods, to avoid AttributeErrors."""defmethod(*args:Any,**kwargs:Any)->None:returnNonereturnmethod
# TODO: this should have been deprecated
[docs]defmerge_dicts(# pragma: no coverdicts:Sequence[Mapping],agg_key_funcs:Optional[Mapping]=None,default_func:Callable[[Sequence[float]],float]=np.mean,)->Dict:"""Merge a sequence with dictionaries into one dictionary by aggregating the same keys with some given function. Args: dicts: Sequence of dictionaries to be merged. agg_key_funcs: Mapping from key name to function. This function will aggregate a list of values, obtained from the same key of all dictionaries. If some key has no specified aggregation function, the default one will be used. Default is: ``None`` (all keys will be aggregated by the default function). default_func: Default function to aggregate keys, which are not presented in the `agg_key_funcs` map. Returns: Dictionary with merged values. Examples: >>> import pprint >>> d1 = {'a': 1.7, 'b': 2.0, 'c': 1, 'd': {'d1': 1, 'd3': 3}} >>> d2 = {'a': 1.1, 'b': 2.2, 'v': 1, 'd': {'d1': 2, 'd2': 3}} >>> d3 = {'a': 1.1, 'v': 2.3, 'd': {'d3': 3, 'd4': {'d5': 1}}} >>> dflt_func = min >>> agg_funcs = {'a': np.mean, 'v': max, 'd': {'d1': sum}} >>> pprint.pprint(merge_dicts([d1, d2, d3], agg_funcs, dflt_func)) {'a': 1.3, 'b': 2.0, 'c': 1, 'd': {'d1': 3, 'd2': 3, 'd3': 3, 'd4': {'d5': 1}}, 'v': 2.3} """agg_key_funcs=agg_key_funcsor{}keys=list(functools.reduce(operator.or_,[set(d.keys())fordindicts]))d_out:Dict=defaultdict(dict)forkinkeys:fn=agg_key_funcs.get(k)values_to_agg=[vforvin[d_in.get(k)ford_inindicts]ifvisnotNone]ifisinstance(values_to_agg[0],dict):d_out[k]=merge_dicts(values_to_agg,fn,default_func)else:d_out[k]=(fnordefault_func)(values_to_agg)returndict(d_out)
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. Read PyTorch Lightning's Privacy Policy.