Source code for pytorch_lightning.loggers.csv_logs
# Copyright The Lightning AI team.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License."""CSV logger----------CSV logger for basic experiment logging that does not require opening ports"""importloggingimportosfromargparseimportNamespacefromtypingimportAny,Dict,Optional,Unionfromlightning_fabric.loggers.csv_logsimport_ExperimentWriteras_FabricExperimentWriterfromlightning_fabric.loggers.csv_logsimportCSVLoggerasFabricCSVLoggerfromlightning_fabric.loggers.loggerimportrank_zero_experimentfromlightning_fabric.utilities.loggerimport_convert_paramsfromlightning_fabric.utilities.typesimport_PATHfrompytorch_lightning.core.savingimportsave_hparams_to_yamlfrompytorch_lightning.loggers.loggerimportLoggerfrompytorch_lightning.utilities.rank_zeroimportrank_zero_onlylog=logging.getLogger(__name__)
[docs]classExperimentWriter(_FabricExperimentWriter):r""" Experiment writer for CSVLogger. Currently, supports to log hyperparameters and metrics in YAML and CSV format, respectively. This logger supports logging to remote filesystems via ``fsspec``. Make sure you have it installed. Args: log_dir: Directory for the experiment logs """NAME_HPARAMS_FILE="hparams.yaml"def__init__(self,log_dir:str)->None:super().__init__(log_dir=log_dir)self.hparams:Dict[str,Any]={}
[docs]defsave(self)->None:"""Save recorded hparams and metrics into files."""hparams_file=os.path.join(self.log_dir,self.NAME_HPARAMS_FILE)save_hparams_to_yaml(hparams_file,self.hparams)returnsuper().save()
[docs]classCSVLogger(Logger,FabricCSVLogger):r""" Log to local file system in yaml and CSV format. Logs are saved to ``os.path.join(save_dir, name, version)``. Example: >>> from pytorch_lightning import Trainer >>> from pytorch_lightning.loggers import CSVLogger >>> logger = CSVLogger("logs", name="my_exp_name") >>> trainer = Trainer(logger=logger) Args: save_dir: Save directory name: Experiment name. Defaults to ``'lightning_logs'``. version: Experiment version. If version is not specified the logger inspects the save directory for existing versions, then automatically assigns the next available version. prefix: A string to put at the beginning of metric keys. flush_logs_every_n_steps: How often to flush logs to disk (defaults to every 100 steps). """LOGGER_JOIN_CHAR="-"def__init__(self,save_dir:_PATH,name:str="lightning_logs",version:Optional[Union[int,str]]=None,prefix:str="",flush_logs_every_n_steps:int=100,):super().__init__(root_dir=save_dir,name=name,version=version,prefix=prefix,flush_logs_every_n_steps=flush_logs_every_n_steps,)self._save_dir=os.fspath(save_dir)@propertydefroot_dir(self)->str:"""Parent directory for all checkpoint subdirectories. If the experiment name parameter is an empty string, no experiment subdirectory is used and the checkpoint will be saved in "save_dir/version" """returnos.path.join(self.save_dir,self.name)@propertydeflog_dir(self)->str:"""The log directory for this run. By default, it is named ``'version_${self.version}'`` but it can be overridden by passing a string value for the constructor's version parameter instead of ``None`` or an int. """# create a pseudo standard pathversion=self.versionifisinstance(self.version,str)elsef"version_{self.version}"log_dir=os.path.join(self.root_dir,version)returnlog_dir@propertydefsave_dir(self)->str:"""The current directory where logs are saved. Returns: The path to current directory where logs are saved. """returnself._save_dir
@property@rank_zero_experimentdefexperiment(self)->_FabricExperimentWriter:r""" Actual _ExperimentWriter object. To use _ExperimentWriter features in your :class:`~pytorch_lightning.core.module.LightningModule` do the following. Example:: self.logger.experiment.some_experiment_writer_function() """ifself._experimentisnotNone:returnself._experimentos.makedirs(self.root_dir,exist_ok=True)self._experiment=ExperimentWriter(log_dir=self.log_dir)returnself._experiment
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. Read PyTorch Lightning's Privacy Policy.