Shortcuts

Source code for pytorch_lightning.loggers.csv_logs

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
CSV logger
----------

CSV logger for basic experiment logging that does not require opening ports

"""
import logging
import os
from argparse import Namespace
from typing import Any, Dict, Optional, Union

from lightning_fabric.loggers.csv_logs import _ExperimentWriter as _FabricExperimentWriter
from lightning_fabric.loggers.csv_logs import CSVLogger as FabricCSVLogger
from lightning_fabric.loggers.logger import rank_zero_experiment
from lightning_fabric.utilities.logger import _convert_params
from lightning_fabric.utilities.types import _PATH
from pytorch_lightning.core.saving import save_hparams_to_yaml
from pytorch_lightning.loggers.logger import Logger
from pytorch_lightning.utilities.rank_zero import rank_zero_only

log = logging.getLogger(__name__)


[docs]class ExperimentWriter(_FabricExperimentWriter): r""" Experiment writer for CSVLogger. Currently, supports to log hyperparameters and metrics in YAML and CSV format, respectively. This logger supports logging to remote filesystems via ``fsspec``. Make sure you have it installed. Args: log_dir: Directory for the experiment logs """ NAME_HPARAMS_FILE = "hparams.yaml" def __init__(self, log_dir: str) -> None: super().__init__(log_dir=log_dir) self.hparams: Dict[str, Any] = {}
[docs] def log_hparams(self, params: Dict[str, Any]) -> None: """Record hparams.""" self.hparams.update(params)
[docs] def save(self) -> None: """Save recorded hparams and metrics into files.""" hparams_file = os.path.join(self.log_dir, self.NAME_HPARAMS_FILE) save_hparams_to_yaml(hparams_file, self.hparams) return super().save()
[docs]class CSVLogger(Logger, FabricCSVLogger): r""" Log to local file system in yaml and CSV format. Logs are saved to ``os.path.join(save_dir, name, version)``. Example: >>> from pytorch_lightning import Trainer >>> from pytorch_lightning.loggers import CSVLogger >>> logger = CSVLogger("logs", name="my_exp_name") >>> trainer = Trainer(logger=logger) Args: save_dir: Save directory name: Experiment name. Defaults to ``'lightning_logs'``. version: Experiment version. If version is not specified the logger inspects the save directory for existing versions, then automatically assigns the next available version. prefix: A string to put at the beginning of metric keys. flush_logs_every_n_steps: How often to flush logs to disk (defaults to every 100 steps). """ LOGGER_JOIN_CHAR = "-" def __init__( self, save_dir: _PATH, name: str = "lightning_logs", version: Optional[Union[int, str]] = None, prefix: str = "", flush_logs_every_n_steps: int = 100, ): super().__init__( root_dir=save_dir, name=name, version=version, prefix=prefix, flush_logs_every_n_steps=flush_logs_every_n_steps, ) self._save_dir = os.fspath(save_dir) @property def root_dir(self) -> str: """Parent directory for all checkpoint subdirectories. If the experiment name parameter is an empty string, no experiment subdirectory is used and the checkpoint will be saved in "save_dir/version" """ return os.path.join(self.save_dir, self.name) @property def log_dir(self) -> str: """The log directory for this run. By default, it is named ``'version_${self.version}'`` but it can be overridden by passing a string value for the constructor's version parameter instead of ``None`` or an int. """ # create a pseudo standard path version = self.version if isinstance(self.version, str) else f"version_{self.version}" log_dir = os.path.join(self.root_dir, version) return log_dir @property def save_dir(self) -> str: """The current directory where logs are saved. Returns: The path to current directory where logs are saved. """ return self._save_dir
[docs] @rank_zero_only def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None: params = _convert_params(params) self.experiment.log_hparams(params)
@property @rank_zero_experiment def experiment(self) -> _FabricExperimentWriter: r""" Actual _ExperimentWriter object. To use _ExperimentWriter features in your :class:`~pytorch_lightning.core.module.LightningModule` do the following. Example:: self.logger.experiment.some_experiment_writer_function() """ if self._experiment is not None: return self._experiment os.makedirs(self.root_dir, exist_ok=True) self._experiment = ExperimentWriter(log_dir=self.log_dir) return self._experiment

© Copyright Copyright (c) 2018-2023, Lightning AI et al...

Built with Sphinx using a theme provided by Read the Docs.