Source code for pytorch_lightning.callbacks.prediction_writer
# Copyright The Lightning AI team.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.r"""BasePredictionWriter====================Aids in saving predictions"""fromtypingimportAny,Optional,Sequencefromtyping_extensionsimportLiteralimportpytorch_lightningasplfrompytorch_lightning.callbacks.callbackimportCallbackfrompytorch_lightning.utilitiesimportLightningEnumfrompytorch_lightning.utilities.exceptionsimportMisconfigurationExceptionclassWriteInterval(LightningEnum):BATCH="batch"EPOCH="epoch"BATCH_AND_EPOCH="batch_and_epoch"@propertydefon_batch(self)->bool:returnselfin(self.BATCH,self.BATCH_AND_EPOCH)@propertydefon_epoch(self)->bool:returnselfin(self.EPOCH,self.BATCH_AND_EPOCH)
[docs]classBasePredictionWriter(Callback):"""Base class to implement how the predictions should be stored. Args: write_interval: When to write. Example:: import torch from pytorch_lightning.callbacks import BasePredictionWriter class CustomWriter(BasePredictionWriter): def __init__(self, output_dir, write_interval): super().__init__(write_interval) self.output_dir = output_dir def write_on_batch_end( self, trainer, pl_module', prediction, batch_indices, batch, batch_idx, dataloader_idx ): torch.save(prediction, os.path.join(self.output_dir, dataloader_idx, f"{batch_idx}.pt")) def write_on_epoch_end(self, trainer, pl_module, predictions, batch_indices): torch.save(predictions, os.path.join(self.output_dir, "predictions.pt")) pred_writer = CustomWriter(output_dir="pred_path", write_interval="epoch") trainer = Trainer(callbacks=[pred_writer]) model = BoringModel() trainer.predict(model, return_predictions=False) Example:: # multi-device inference example import torch from pytorch_lightning.callbacks import BasePredictionWriter class CustomWriter(BasePredictionWriter): def __init__(self, output_dir, write_interval): super().__init__(write_interval) self.output_dir = output_dir def write_on_epoch_end(self, trainer, pl_module, predictions, batch_indices): # this will create N (num processes) files in `output_dir` each containing # the predictions of it's respective rank torch.save(predictions, os.path.join(self.output_dir, f"predictions_{trainer.global_rank}.pt")) # optionally, you can also save `batch_indices` to get the information about the data index # from your prediction data torch.save(batch_indices, os.path.join(self.output_dir, f"batch_indices_{trainer.global_rank}.pt")) # or you can set `writer_interval="batch"` and override `write_on_batch_end` to save # predictions at batch level pred_writer = CustomWriter(output_dir="pred_path", write_interval="epoch") trainer = Trainer(accelerator="gpu", strategy="ddp", devices=8, callbacks=[pred_writer]) model = BoringModel() trainer.predict(model, return_predictions=False) """def__init__(self,write_interval:Literal["batch","epoch","batch_and_epoch"]="batch")->None:ifwrite_intervalnotinlist(WriteInterval):raiseMisconfigurationException(f"`write_interval` should be one of {[i.valueforiinWriteInterval]}.")self.interval=WriteInterval(write_interval)
[docs]defwrite_on_batch_end(self,trainer:"pl.Trainer",pl_module:"pl.LightningModule",prediction:Any,batch_indices:Optional[Sequence[int]],batch:Any,batch_idx:int,dataloader_idx:int,)->None:"""Override with the logic to write a single batch."""raiseNotImplementedError()
[docs]defwrite_on_epoch_end(self,trainer:"pl.Trainer",pl_module:"pl.LightningModule",predictions:Sequence[Any],batch_indices:Optional[Sequence[Any]],)->None:"""Override with the logic to write all batches."""raiseNotImplementedError()
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. Read PyTorch Lightning's Privacy Policy.