Source code for pytorch_lightning.accelerators.hpu
# Copyright The Lightning AI team.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.fromtypingimportAny,Dict,List,Optional,Unionimporttorchfromlightning_utilities.core.importsimportpackage_availablefromlightning_fabric.utilities.typesimport_DEVICEfrompytorch_lightning.accelerators.acceleratorimportAcceleratorfrompytorch_lightning.utilities.exceptionsimportMisconfigurationExceptionfrompytorch_lightning.utilities.rank_zeroimportrank_zero_debug_HABANA_FRAMEWORK_AVAILABLE=package_available("habana_frameworks")if_HABANA_FRAMEWORK_AVAILABLE:fromhabana_frameworks.torch.utils.library_loaderimportis_habana_available_HPU_AVAILABLE=is_habana_available()else:_HPU_AVAILABLE=Falseif_HPU_AVAILABLE:importhabana_frameworks.torch.hpuastorch_hpu
[docs]classHPUAccelerator(Accelerator):"""Accelerator for HPU devices."""
[docs]defsetup_device(self,device:torch.device)->None:""" Raises: MisconfigurationException: If the selected device is not HPU. """ifdevice.type!="hpu":raiseMisconfigurationException(f"Device should be HPU, got {device} instead.")
[docs]defget_device_stats(self,device:_DEVICE)->Dict[str,Any]:"""Returns a map of the following metrics with their values: - Limit: amount of total memory on HPU device. - InUse: amount of allocated memory at any instance. - MaxInUse: amount of total active memory allocated. - NumAllocs: number of allocations. - NumFrees: number of freed chunks. - ActiveAllocs: number of active allocations. - MaxAllocSize: maximum allocated size. - TotalSystemAllocs: total number of system allocations. - TotalSystemFrees: total number of system frees. - TotalActiveAllocs: total number of active allocations. """try:returntorch_hpu.hpu.memory_stats(device)except(AttributeError,NameError):rank_zero_debug("HPU `get_device_stats` failed")return{}
[docs]@staticmethoddefget_parallel_devices(devices:int)->List[torch.device]:"""Gets parallel devices for the Accelerator."""return[torch.device("hpu")]*devices
[docs]@staticmethoddefauto_device_count()->int:"""Returns the number of HPU devices when the devices is set to auto."""try:returntorch_hpu.device_count()except(AttributeError,NameError):rank_zero_debug("HPU `auto_device_count` failed, returning default count of 8.")return8
[docs]@staticmethoddefis_available()->bool:"""Returns a bool indicating if HPU is currently available."""try:returntorch_hpu.is_available()except(AttributeError,NameError):returnFalse
[docs]@staticmethoddefget_device_name()->str:"""Returns the name of the HPU device."""try:returntorch_hpu.get_device_name()except(AttributeError,NameError):return""
def_parse_hpus(devices:Optional[Union[int,str,List[int]]])->Optional[int]:""" Parses the hpus given in the format as accepted by the :class:`~pytorch_lightning.trainer.Trainer` for the `devices` flag. Args: devices: An integer that indicates the number of Gaudi devices to be used Returns: Either an integer or ``None`` if no devices were requested Raises: MisconfigurationException: If devices aren't of type `int` or `str` """ifdevicesisnotNoneandnotisinstance(devices,(int,str)):raiseMisconfigurationException("`devices` for `HPUAccelerator` must be int, string or None.")returnint(devices)ifisinstance(devices,str)elsedevices
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. Read PyTorch Lightning's Privacy Policy.