# Copyright The Lightning AI team.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License."""Abstract base class used to build new loggers."""fromabcimportABC,abstractmethodfromargparseimportNamespacefromfunctoolsimportwrapsfromtypingimportAny,Callable,Dict,Optional,UnionfromtorchimportTensorfromtorch.nnimportModulefromlightning_fabric.utilities.rank_zeroimportrank_zero_only
[docs]classLogger(ABC):"""Base class for experiment loggers."""@property@abstractmethoddefname(self)->Optional[str]:"""Return the experiment name."""@property@abstractmethoddefversion(self)->Optional[Union[int,str]]:"""Return the experiment version."""@propertydefroot_dir(self)->Optional[str]:"""Return the root directory where all versions of an experiment get saved, or `None` if the logger does not save data locally."""returnNone@propertydeflog_dir(self)->Optional[str]:"""Return directory the current version of the experiment gets saved, or `None` if the logger does not save data locally."""returnNone@propertydefgroup_separator(self)->str:"""Return the default separator used by the logger to group the data into subfolders."""return"/"
[docs]@abstractmethoddeflog_metrics(self,metrics:Dict[str,float],step:Optional[int]=None)->None:"""Records metrics. This method logs metrics as soon as it received them. Args: metrics: Dictionary with metric names as keys and measured quantities as values step: Step number at which the metrics should be recorded """pass
[docs]@abstractmethoddeflog_hyperparams(self,params:Union[Dict[str,Any],Namespace],*args:Any,**kwargs:Any)->None:"""Record hyperparameters. Args: params: :class:`~argparse.Namespace` or `Dict` containing the hyperparameters args: Optional positional arguments, depends on the specific logger being used kwargs: Optional keyword arguments, depends on the specific logger being used """
[docs]deflog_graph(self,model:Module,input_array:Optional[Tensor]=None)->None:"""Record model graph. Args: model: the model with an implementation of ``forward``. input_array: input passes to `model.forward` """pass
[docs]deffinalize(self,status:str)->None:"""Do any processing that is necessary to finalize an experiment. Args: status: Status that the experiment finished with (e.g. success, failed, aborted) """self.save()
defrank_zero_experiment(fn:Callable)->Callable:"""Returns the real experiment on rank 0 and otherwise the _DummyExperiment."""@wraps(fn)defexperiment(self)->Union[Any,_DummyExperiment]:# type: ignore[no-untyped-def]""" Note: ``self`` is a custom logger instance. The loggers typically wrap an ``experiment`` method with a ``@rank_zero_experiment`` decorator. ``Union[Any, _DummyExperiment]`` is used because the wrapped hooks have several return types that are specific to the custom logger. The return type here can be considered as ``Union[return type of logger.experiment, _DummyExperiment]``. """@rank_zero_onlydefget_experiment()->Callable:returnfn(self)returnget_experiment()or_DummyExperiment()returnexperimentclass_DummyExperiment:"""Dummy experiment."""defnop(self,*args:Any,**kw:Any)->None:passdef__getattr__(self,_:Any)->Callable:returnself.nopdef__getitem__(self,idx:int)->"_DummyExperiment":# enables self.logger.experiment[0].add_image(...)returnselfdef__setitem__(self,*args:Any,**kwargs:Any)->None:pass
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. Read PyTorch Lightning's Privacy Policy.