CSVLogger¶
- class lightning_fabric.loggers.CSVLogger(root_dir, name='lightning_logs', version=None, prefix='', flush_logs_every_n_steps=100)[source]¶
Bases:
lightning_fabric.loggers.logger.Logger
Log to the local file system in CSV format.
Logs are saved to
os.path.join(root_dir, name, version)
.- Parameters
root_dir¶ (
Union
[str
,Path
]) – The root directory in which all your experiments with different names and versions will be stored.name¶ (
str
) – Experiment name. Defaults to'lightning_logs'
.version¶ (
Union
[int
,str
,None
]) – Experiment version. If version is not specified the logger inspects the save directory for existing versions, then automatically assigns the next available version.prefix¶ (
str
) – A string to put at the beginning of metric keys.flush_logs_every_n_steps¶ (
int
) – How often to flush logs to disk (defaults to every 100 steps).
Example:
from lightning.fabric.loggers import CSVLogger logger = CSVLogger("path/to/logs/root", name="my_model") logger.log_metrics({"loss": 0.235, "acc": 0.75}) logger.finalize("success")
- log_metrics(metrics, step=None)[source]¶
Records metrics. This method logs metrics as soon as it received them.
- property experiment: lightning_fabric.loggers.csv_logs._ExperimentWriter¶
Actual ExperimentWriter object. To use ExperimentWriter features anywhere in your code, do the following.
Example:
self.logger.experiment.some_experiment_writer_function()
- Return type
_ExperimentWriter
- property log_dir: str¶
The log directory for this run.
By default, it is named
'version_${self.version}'
but it can be overridden by passing a string value for the constructor’s version parameter instead ofNone
or an int.- Return type
- property name: str¶
Gets the name of the experiment.
- Return type
- Returns
The name of the experiment.