Source code for pytorch_lightning.strategies.dp
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional, Union
import torch
from lightning_utilities.core.apply_func import apply_to_collection
from torch import Tensor
from torch.nn import DataParallel, Module
import pytorch_lightning as pl
from lightning_fabric.plugins import CheckpointIO
from lightning_fabric.utilities.distributed import ReduceOp
from pytorch_lightning.overrides.base import _LightningPrecisionModuleWrapperBase
from pytorch_lightning.overrides.data_parallel import LightningParallelModule
from pytorch_lightning.plugins.precision import PrecisionPlugin
from pytorch_lightning.strategies.parallel import ParallelStrategy
from pytorch_lightning.strategies.strategy import TBroadcast, TReduce
from pytorch_lightning.utilities.model_helpers import is_overridden
from pytorch_lightning.utilities.types import STEP_OUTPUT
[docs]class DataParallelStrategy(ParallelStrategy):
    """Implements data-parallel training in a single process, i.e., the model gets replicated to each device and
    each gets a split of the data."""
    strategy_name = "dp"
    def __init__(
        self,
        accelerator: Optional["pl.accelerators.Accelerator"] = None,
        parallel_devices: Optional[List[torch.device]] = None,
        checkpoint_io: Optional[CheckpointIO] = None,
        precision_plugin: Optional[PrecisionPlugin] = None,
    ):
        super().__init__(
            accelerator=accelerator,
            parallel_devices=parallel_devices,
            cluster_environment=None,
            checkpoint_io=checkpoint_io,
            precision_plugin=precision_plugin,
        )
    @property
    def global_rank(self) -> int:
        return 0
    @property
    def local_rank(self) -> int:
        return 0
    @property
    def node_rank(self) -> int:
        return 0
    @property
    def world_size(self) -> int:
        return 1
[docs]    def setup(self, trainer: "pl.Trainer") -> None:
        # model needs to be moved to the device before it is wrapped
        self.model_to_device()
        assert isinstance(self.model, (pl.LightningModule, _LightningPrecisionModuleWrapperBase))
        self.model = self._setup_model(LightningParallelModule(self.model))
        super().setup(trainer)
[docs]    def batch_to_device(self, batch: Any, device: Optional[torch.device] = None, dataloader_idx: int = 0) -> Any:
        """Moves the batch to the correct device.
        The input and the output is the same type.
        Args:
            batch: The batch of samples to move to the correct device
            device: The target device
            dataloader_idx: The index of the dataloader to which the batch belongs.
        """
        # DataParallel handles the transfer of batch to the device
        return batch
    def _setup_model(self, model: Module) -> DataParallel:
        """Wraps the given model into a :class:`~torch.nn.parallel.DataParallel` module."""
        return DataParallel(module=model, device_ids=self.parallel_devices)
[docs]    def reduce(
        self, collection: TReduce, group: Optional[Any] = None, reduce_op: Optional[Union[ReduceOp, str]] = "mean"
    ) -> TReduce:
        """Reduces a collection of tensors from all processes. It can be applied to just a single tensor.
        Args:
            collection: The collection of tensors to sync and reduce.
            group: ignored for DP
            reduce_op: ignored for DP
        Return:
            Reduced tensor values or the same value if it was not or did not contain a tensor.
        """
        def mean(t: Tensor) -> Tensor:
            original_dtype = t.dtype
            return t.float().mean().to(original_dtype)
        return apply_to_collection(collection, Tensor, mean)
    @property
    def root_device(self) -> torch.device:
        assert self.parallel_devices is not None
        return self.parallel_devices[0]
[docs]    def model_to_device(self) -> None:
        assert self.model is not None
        self.model.to(self.root_device)
[docs]    def training_step(self, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
        with self.precision_plugin.train_step_context():
            assert self.model is not None
            return self.model(*args, **kwargs)
[docs]    def validation_step(self, *args: Any, **kwargs: Any) -> Optional[STEP_OUTPUT]:
        with self.precision_plugin.val_step_context():
            assert self.model is not None
            return self.model(*args, **kwargs)
[docs]    def test_step(self, *args: Any, **kwargs: Any) -> Optional[STEP_OUTPUT]:
        with self.precision_plugin.test_step_context():
            assert self.model is not None
            return self.model(*args, **kwargs)
[docs]    def predict_step(self, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
        with self.precision_plugin.predict_step_context():
            assert self.model is not None
            return self.model(*args, **kwargs)
    def training_step_end(self, output: STEP_OUTPUT) -> STEP_OUTPUT:
        if is_overridden("training_step_end", self.lightning_module):
            return output
        if isinstance(output, dict) and "loss" in output:
            output["loss"] = self.reduce(output["loss"])
        elif isinstance(output, Tensor):
            output = self.reduce(output)
        return output
    @classmethod
    def register_strategies(cls, strategy_registry: Dict) -> None:
        strategy_registry.register(
            cls.strategy_name,
            cls,
            description=f"{cls.__class__.__name__}",
        )