Source code for pytorch_lightning.loggers.mlflow
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
MLflow Logger
-------------
"""
import logging
import os
import re
import tempfile
from argparse import Namespace
from pathlib import Path
from time import time
from typing import Any, Dict, List, Mapping, Optional, Union
import yaml
from lightning_utilities.core.imports import RequirementCache
from torch import Tensor
from typing_extensions import Literal
from lightning_fabric.utilities.logger import _add_prefix, _convert_params, _flatten_dict
from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint
from pytorch_lightning.loggers.logger import Logger, rank_zero_experiment
from pytorch_lightning.utilities.logger import _scan_checkpoints
from pytorch_lightning.utilities.rank_zero import rank_zero_only, rank_zero_warn
log = logging.getLogger(__name__)
LOCAL_FILE_URI_PREFIX = "file:"
_MLFLOW_AVAILABLE = RequirementCache("mlflow>=1.0.0")
if _MLFLOW_AVAILABLE:
    from mlflow.entities import Metric, Param
    from mlflow.tracking import context, MlflowClient
    from mlflow.utils.mlflow_tags import MLFLOW_RUN_NAME
else:
    MlflowClient, context = None, None
    Metric, Param = None, None
    MLFLOW_RUN_NAME = "mlflow.runName"
# before v1.1.0
if hasattr(context, "resolve_tags"):
    from mlflow.tracking.context import resolve_tags
# since v1.1.0
elif hasattr(context, "registry"):
    from mlflow.tracking.context.registry import resolve_tags
else:
[docs]    def resolve_tags(tags: Optional[Dict] = None) -> Optional[Dict]:
        """
        Args:
            tags: A dictionary of tags to override. If specified, tags passed in this argument will
                 override those inferred from the context.
        Returns: A dictionary of resolved tags.
        Note:
            See ``mlflow.tracking.context.registry`` for more details.
        """
        return tags
[docs]class MLFlowLogger(Logger):
    """Log using `MLflow <https://mlflow.org>`_.
    Install it with pip:
    .. code-block:: bash
        pip install mlflow
    .. code-block:: python
        from pytorch_lightning import Trainer
        from pytorch_lightning.loggers import MLFlowLogger
        mlf_logger = MLFlowLogger(experiment_name="lightning_logs", tracking_uri="file:./ml-runs")
        trainer = Trainer(logger=mlf_logger)
    Use the logger anywhere in your :class:`~pytorch_lightning.core.module.LightningModule` as follows:
    .. code-block:: python
        from pytorch_lightning import LightningModule
        class LitModel(LightningModule):
            def training_step(self, batch, batch_idx):
                # example
                self.logger.experiment.whatever_ml_flow_supports(...)
            def any_lightning_module_function_or_hook(self):
                self.logger.experiment.whatever_ml_flow_supports(...)
    Args:
        experiment_name: The name of the experiment.
        run_name: Name of the new run. The `run_name` is internally stored as a ``mlflow.runName`` tag.
            If the ``mlflow.runName`` tag has already been set in `tags`, the value is overridden by the `run_name`.
        tracking_uri: Address of local or remote tracking server.
            If not provided, defaults to `MLFLOW_TRACKING_URI` environment variable if set, otherwise it falls
            back to `file:<save_dir>`.
        tags: A dictionary tags for the experiment.
        save_dir: A path to a local directory where the MLflow runs get saved.
            Defaults to `./mlflow` if `tracking_uri` is not provided.
            Has no effect if `tracking_uri` is provided.
        log_model: Log checkpoints created by :class:`~pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint`
            as MLFlow artifacts.
            * if ``log_model == 'all'``, checkpoints are logged during training.
            * if ``log_model == True``, checkpoints are logged at the end of training, except when
              :paramref:`~pytorch_lightning.callbacks.Checkpoint.save_top_k` ``== -1``
              which also logs every checkpoint during training.
            * if ``log_model == False`` (default), no checkpoint is logged.
        prefix: A string to put at the beginning of metric keys.
        artifact_location: The location to store run artifacts. If not provided, the server picks an appropriate
            default.
        run_id: The run identifier of the experiment. If not provided, a new run is started.
    Raises:
        ModuleNotFoundError:
            If required MLFlow package is not installed on the device.
    """
    LOGGER_JOIN_CHAR = "-"
    def __init__(
        self,
        experiment_name: str = "lightning_logs",
        run_name: Optional[str] = None,
        tracking_uri: Optional[str] = os.getenv("MLFLOW_TRACKING_URI"),
        tags: Optional[Dict[str, Any]] = None,
        save_dir: Optional[str] = "./mlruns",
        log_model: Literal[True, False, "all"] = False,
        prefix: str = "",
        artifact_location: Optional[str] = None,
        run_id: Optional[str] = None,
    ):
        if not _MLFLOW_AVAILABLE:
            raise ModuleNotFoundError(str(_MLFLOW_AVAILABLE))
        super().__init__()
        if not tracking_uri:
            tracking_uri = f"{LOCAL_FILE_URI_PREFIX}{save_dir}"
        self._experiment_name = experiment_name
        self._experiment_id: Optional[str] = None
        self._tracking_uri = tracking_uri
        self._run_name = run_name
        self._run_id = run_id
        self.tags = tags
        self._log_model = log_model
        self._logged_model_time: Dict[str, float] = {}
        self._checkpoint_callback: Optional[ModelCheckpoint] = None
        self._prefix = prefix
        self._artifact_location = artifact_location
        self._initialized = False
        self._mlflow_client = MlflowClient(tracking_uri)
    @property
    @rank_zero_experiment
    def experiment(self) -> MlflowClient:
        r"""
        Actual MLflow object. To use MLflow features in your
        :class:`~pytorch_lightning.core.module.LightningModule` do the following.
        Example::
            self.logger.experiment.some_mlflow_function()
        """
        if self._initialized:
            return self._mlflow_client
        if self._run_id is not None:
            run = self._mlflow_client.get_run(self._run_id)
            self._experiment_id = run.info.experiment_id
            self._initialized = True
            return self._mlflow_client
        if self._experiment_id is None:
            expt = self._mlflow_client.get_experiment_by_name(self._experiment_name)
            if expt is not None:
                self._experiment_id = expt.experiment_id
            else:
                log.warning(f"Experiment with name {self._experiment_name} not found. Creating it.")
                self._experiment_id = self._mlflow_client.create_experiment(
                    name=self._experiment_name, artifact_location=self._artifact_location
                )
        if self._run_id is None:
            if self._run_name is not None:
                self.tags = self.tags or {}
                if MLFLOW_RUN_NAME in self.tags:
                    log.warning(
                        f"The tag {MLFLOW_RUN_NAME} is found in tags. The value will be overridden by {self._run_name}."
                    )
                self.tags[MLFLOW_RUN_NAME] = self._run_name
            run = self._mlflow_client.create_run(experiment_id=self._experiment_id, tags=resolve_tags(self.tags))
            self._run_id = run.info.run_id
        self._initialized = True
        return self._mlflow_client
    @property
    def run_id(self) -> Optional[str]:
        """Create the experiment if it does not exist to get the run id.
        Returns:
            The run id.
        """
        _ = self.experiment
        return self._run_id
    @property
    def experiment_id(self) -> Optional[str]:
        """Create the experiment if it does not exist to get the experiment id.
        Returns:
            The experiment id.
        """
        _ = self.experiment
        return self._experiment_id
[docs]    @rank_zero_only
    def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None:
        params = _convert_params(params)
        params = _flatten_dict(params)
        # Truncate parameter values to 250 characters.
        # TODO: MLflow 1.28 allows up to 500 characters: https://github.com/mlflow/mlflow/releases/tag/v1.28.0
        params_list = [Param(key=k, value=str(v)[:250]) for k, v in params.items()]
        # Log in chunks of 100 parameters (the maximum allowed by MLflow).
        for idx in range(0, len(params_list), 100):
            self.experiment.log_batch(run_id=self.run_id, params=params_list[idx : idx + 100])
[docs]    @rank_zero_only
    def log_metrics(self, metrics: Mapping[str, float], step: Optional[int] = None) -> None:
        assert rank_zero_only.rank == 0, "experiment tried to log from global_rank != 0"
        metrics = _add_prefix(metrics, self._prefix, self.LOGGER_JOIN_CHAR)
        metrics_list: List[Metric] = []
        timestamp_ms = int(time() * 1000)
        for k, v in metrics.items():
            if isinstance(v, str):
                log.warning(f"Discarding metric with string value {k}={v}.")
                continue
            new_k = re.sub("[^a-zA-Z0-9_/. -]+", "", k)
            if k != new_k:
                rank_zero_warn(
                    "MLFlow only allows '_', '/', '.' and ' ' special characters in metric name."
                    f" Replacing {k} with {new_k}.",
                    category=RuntimeWarning,
                )
                k = new_k
            metrics_list.append(Metric(key=k, value=v, timestamp=timestamp_ms, step=step or 0))
        self.experiment.log_batch(run_id=self.run_id, metrics=metrics_list)
[docs]    @rank_zero_only
    def finalize(self, status: str = "success") -> None:
        if not self._initialized:
            return
        if status == "success":
            status = "FINISHED"
        elif status == "failed":
            status = "FAILED"
        elif status == "finished":
            status = "FINISHED"
        # log checkpoints as artifacts
        if self._checkpoint_callback:
            self._scan_and_log_checkpoints(self._checkpoint_callback)
        if self.experiment.get_run(self.run_id):
            self.experiment.set_terminated(self.run_id, status)
    @property
    def save_dir(self) -> Optional[str]:
        """The root file directory in which MLflow experiments are saved.
        Return:
            Local path to the root experiment directory if the tracking uri is local.
            Otherwise returns `None`.
        """
        if self._tracking_uri.startswith(LOCAL_FILE_URI_PREFIX):
            return self._tracking_uri.lstrip(LOCAL_FILE_URI_PREFIX)
    @property
    def name(self) -> Optional[str]:
        """Get the experiment id.
        Returns:
            The experiment id.
        """
        return self.experiment_id
    @property
    def version(self) -> Optional[str]:
        """Get the run id.
        Returns:
            The run id.
        """
        return self.run_id
[docs]    def after_save_checkpoint(self, checkpoint_callback: ModelCheckpoint) -> None:
        # log checkpoints as artifacts
        if self._log_model == "all" or self._log_model is True and checkpoint_callback.save_top_k == -1:
            self._scan_and_log_checkpoints(checkpoint_callback)
        elif self._log_model is True:
            self._checkpoint_callback = checkpoint_callback
    def _scan_and_log_checkpoints(self, checkpoint_callback: ModelCheckpoint) -> None:
        # get checkpoints to be saved with associated score
        checkpoints = _scan_checkpoints(checkpoint_callback, self._logged_model_time)
        # log iteratively all new checkpoints
        for t, p, s, tag in checkpoints:
            metadata = {
                # Ensure .item() is called to store Tensor contents
                "score": s.item() if isinstance(s, Tensor) else s,
                "original_filename": Path(p).name,
                "Checkpoint": {
                    k: getattr(checkpoint_callback, k)
                    for k in [
                        "monitor",
                        "mode",
                        "save_last",
                        "save_top_k",
                        "save_weights_only",
                        "_every_n_train_steps",
                        "_every_n_val_epochs",
                    ]
                    # ensure it does not break if `Checkpoint` args change
                    if hasattr(checkpoint_callback, k)
                },
            }
            aliases = ["latest", "best"] if p == checkpoint_callback.best_model_path else ["latest"]
            # Artifact path on mlflow
            artifact_path = f"model/checkpoints/{Path(p).stem}"
            # Log the checkpoint
            self.experiment.log_artifact(self._run_id, p, artifact_path)
            # Create a temporary directory to log on mlflow
            with tempfile.TemporaryDirectory(prefix="test", suffix="test", dir=os.getcwd()) as tmp_dir:
                # Log the metadata
                with open(f"{tmp_dir}/metadata.yaml", "w") as tmp_file_metadata:
                    yaml.dump(metadata, tmp_file_metadata, default_flow_style=False)
                # Log the aliases
                with open(f"{tmp_dir}/aliases.txt", "w") as tmp_file_aliases:
                    tmp_file_aliases.write(str(aliases))
                # Log the metadata and aliases
                self.experiment.log_artifacts(self._run_id, tmp_dir, artifact_path)
            # remember logged models - timestamp needed in case filename didn't change (lastkckpt or custom name)
            self._logged_model_time[p] = t