Source code for lightning_fabric.plugins.precision.precision
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
from typing import Any, Dict, Generator, Optional, Union
import torch
from torch import Tensor
from torch.nn import Module
from torch.optim import Optimizer
from typing_extensions import Literal
from lightning_fabric.plugins.precision.utils import _convert_fp_tensor
from lightning_fabric.utilities.types import _PARAMETERS, Optimizable
_PRECISION_INPUT_INT = Literal[64, 32, 16]
_PRECISION_INPUT_STR = Literal["64", "32", "16", "bf16"]
_PRECISION_INPUT = Union[_PRECISION_INPUT_INT, _PRECISION_INPUT_STR]
[docs]class Precision:
    """Base class for all plugins handling the precision-specific parts of the training.
    The class attribute precision must be overwritten in child classes. The default value reflects fp32 training.
    """
    precision: _PRECISION_INPUT_STR = "32"
[docs]    def convert_module(self, module: Module) -> Module:
        """Convert the module parameters to the precision type this plugin handles.
        This is optional and depends on the precision limitations during optimization.
        """
        return module
[docs]    @contextlib.contextmanager
    def forward_context(self) -> Generator[None, None, None]:
        """A contextmanager for managing model forward/training_step/evaluation_step/predict_step."""
        yield
[docs]    def convert_input(self, data: Tensor) -> Tensor:
        """Convert model inputs (forward) to the floating point precision type of this plugin.
        This is a no-op for tensors that are not of floating-point type or already have the desired type.
        """
        return _convert_fp_tensor(data, torch.float32)
[docs]    def pre_backward(self, tensor: Tensor, module: Optional[Module]) -> Any:
        """Runs before precision plugin executes backward.
        Args:
            tensor: The tensor that will be used for backpropagation
            module: The module that was involved in producing the tensor and whose parameters need the gradients
        """
[docs]    def backward(self, tensor: Tensor, model: Optional[Module], *args: Any, **kwargs: Any) -> None:
        """Performs the actual backpropagation.
        Args:
            tensor: The tensor that will be used for backpropagation
            model: The module that was involved in producing the tensor and whose parameters need the gradients
        """
        tensor.backward(*args, **kwargs)
[docs]    def post_backward(self, tensor: Tensor, module: Optional[Module]) -> Any:
        """Runs after precision plugin executes backward.
        Args:
            tensor: The tensor that will be used for backpropagation
            module: The module that was involved in producing the tensor and whose parameters need the gradients
        """
[docs]    def optimizer_step(
        self,
        optimizer: Optimizable,
        **kwargs: Any,
    ) -> Any:
        """Hook to run the optimizer step."""
        return optimizer.step(**kwargs)
[docs]    def main_params(self, optimizer: Optimizer) -> _PARAMETERS:
        """The main params of the model.
        Returns the plain model params here. Maybe different in other precision plugins.
        """
        for group in optimizer.param_groups:
            yield from group["params"]
[docs]    def state_dict(self) -> Dict[str, Any]:
        """Called when saving a checkpoint, implement to generate precision plugin state_dict.
        Returns:
            A dictionary containing precision plugin state.
        """
        return {}
[docs]    def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
        """Called when loading a checkpoint, implement to reload precision plugin state given precision plugin
        state_dict.
        Args:
            state_dict: the precision plugin state returned by ``state_dict``.
        """
        pass
[docs]    def teardown(self) -> None:
        """This method is called to teardown the training process.
        It is the right place to release memory and free other resources.
        """