PredictionLoop
class pytorch_lightning.loops.dataloader. PredictionLoop [source]
Bases: pytorch_lightning.loops.dataloader.dataloader_loop.DataLoaderLoop
Loop to run over dataloaders for prediction.
advance ( * args , ** kwargs ) [source]
Predicts one entire dataloader.
Return type
None
connect ( epoch_loop ) [source]
Connect the prediction epoch loop with this loop.
Return type
None
on_run_end ( ) [source]
Calls on_predict_epoch_end
and on_predict_end
hooks and returns results from all dataloaders.
Return type
Union
[List
[Any
], List
[List
[Any
]], None
]
on_run_start ( ) [source]
Calls _on_predict_start
hook.
Return type
None
reset ( ) [source]
Resets the internal state of the loop for a new run.
Return type
None
property dataloaders : Sequence [ torch.utils.data.dataloader.DataLoader ]
Returns all prediction dataloaders.
Return type
Sequence
[DataLoader
]
property max_batches : List [ int ]
The max number of batches this loop will run for each dataloader.
Return type
List
[int
]
property num_dataloaders : int
Returns the number of prediction dataloaders.
Return type
int
property return_predictions : bool
Whether to return the predictions or not.
Return type
bool
property skip : bool
Determine whether to return immediately from the call to run()
.
Example:
@property
def skip ( self ):
return len ( self . trainer . train_dataloader ) == 0
Copy to clipboard
Return type
bool
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. Read PyTorch Lightning's Privacy Policy .