Shortcuts

test_tube

Classes

TestTubeLogger

Log to local file system in TensorBoard format but using a nicer folder structure (see full docs).

Test Tube Logger

class pytorch_lightning.loggers.test_tube.TestTubeLogger(save_dir, name='default', description=None, debug=False, version=None, create_git_tag=False, log_graph=False, prefix='')[source]

Bases: pytorch_lightning.loggers.base.LightningLoggerBase

Log to local file system in TensorBoard format but using a nicer folder structure (see full docs).

Warning

The test-tube package is no longer maintained and PyTorch Lightning will remove the :class:´TestTubeLogger´ in v1.7.0.

Install it with pip:

pip install test_tube
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import TestTubeLogger

logger = TestTubeLogger("tt_logs", name="my_exp_name")
trainer = Trainer(logger=logger)

Use the logger anywhere in your LightningModule as follows:

from pytorch_lightning import LightningModule


class LitModel(LightningModule):
    def training_step(self, batch, batch_idx):
        # example
        self.logger.experiment.whatever_method_summary_writer_supports(...)

    def any_lightning_module_function_or_hook(self):
        self.logger.experiment.add_histogram(...)
Parameters
  • save_dir (str) – Save directory

  • name (str) – Experiment name. Defaults to 'default'.

  • description (Optional[str]) – A short snippet about this experiment

  • debug (bool) – If True, it doesn’t log anything.

  • version (Optional[int]) – Experiment version. If version is not specified the logger inspects the save directory for existing versions, then automatically assigns the next available version.

  • create_git_tag (bool) – If True creates a git tag to save the code used in this experiment.

  • log_graph (bool) – Adds the computational graph to tensorboard. This requires that the user has defined the self.example_input_array attribute in their model.

  • prefix (str) – A string to put at the beginning of metric keys.

Raises

ModuleNotFoundError – If required TestTube package is not installed on the device.

close()[source]

Do any cleanup that is necessary to close an experiment.

See deprecation warning below.

Deprecated since version v1.5: This method is deprecated in v1.5 and will be removed in v1.7. Please use LightningLoggerBase.finalize instead.

Return type

None

finalize(status)[source]

Do any processing that is necessary to finalize an experiment.

Parameters

status (str) – Status that the experiment finished with (e.g. success, failed, aborted)

Return type

None

log_graph(model, input_array=None)[source]

Record model graph.

Parameters
  • model (LightningModule) – lightning model

  • input_array – input passes to model.forward

log_hyperparams(params)[source]

Record hyperparameters.

Parameters
  • params (Union[Dict[str, Any], Namespace]) – Namespace containing the hyperparameters

  • args – Optional positional arguments, depends on the specific logger being used

  • kwargs – Optional keyword arguments, depends on the specific logger being used

Return type

None

log_metrics(metrics, step=None)[source]

Records metrics. This method logs metrics as as soon as it received them. If you want to aggregate metrics for one specific step, use the agg_and_log_metrics() method.

Parameters
  • metrics (Dict[str, float]) – Dictionary with metric names as keys and measured quantities as values

  • step (Optional[int]) – Step number at which the metrics should be recorded

Return type

None

save()[source]

Save log data.

Return type

None

property experiment: test_tube.Experiment

Actual TestTube object. To use TestTube features in your LightningModule do the following.

Example:

self.logger.experiment.some_test_tube_function()
Return type

Experiment

property name: str

Gets the experiment name.

Return type

str

Returns

The experiment name if the experiment exists, else the name specified in the constructor.

property save_dir: Optional[str]

Gets the save directory.

Return type

Optional[str]

Returns

The path to the save directory.

property version: int

Gets the experiment version.

Return type

int

Returns

The experiment version if the experiment exists, else the next version.

You are viewing an outdated version of PyTorch Lightning Docs

Click here to view the latest version→