# Copyright The PyTorch Lightning team.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License."""LightningDataModule for loading DataLoaders with ease."""fromargparseimportArgumentParser,NamespacefromtypingimportAny,Dict,List,Mapping,Optional,Sequence,Tuple,Unionfromtorch.utils.dataimportDataLoader,Dataset,IterableDatasetfrompytorch_lightning.core.hooksimportCheckpointHooks,DataHooksfrompytorch_lightning.core.mixinsimportHyperparametersMixinfrompytorch_lightning.utilitiesimportrank_zero_deprecationfrompytorch_lightning.utilities.argparseimportadd_argparse_args,from_argparse_args,get_init_arguments_and_types
[docs]classLightningDataModule(CheckpointHooks,DataHooks,HyperparametersMixin):"""A DataModule standardizes the training, val, test splits, data preparation and transforms. The main advantage is consistent data splits, data preparation and transforms across models. Example:: class MyDataModule(LightningDataModule): def __init__(self): super().__init__() def prepare_data(self): # download, split, etc... # only called on 1 GPU/TPU in distributed def setup(self, stage): # make assignments here (val/train/test split) # called on every process in DDP def train_dataloader(self): train_split = Dataset(...) return DataLoader(train_split) def val_dataloader(self): val_split = Dataset(...) return DataLoader(val_split) def test_dataloader(self): test_split = Dataset(...) return DataLoader(test_split) def teardown(self): # clean up after fit or test # called on every process in DDP """name:str=...def__init__(self,train_transforms=None,val_transforms=None,test_transforms=None,dims=None):super().__init__()iftrain_transformsisnotNone:rank_zero_deprecation("DataModule property `train_transforms` was deprecated in v1.5 and will be removed in v1.7.")ifval_transformsisnotNone:rank_zero_deprecation("DataModule property `val_transforms` was deprecated in v1.5 and will be removed in v1.7.")iftest_transformsisnotNone:rank_zero_deprecation("DataModule property `test_transforms` was deprecated in v1.5 and will be removed in v1.7.")ifdimsisnotNone:rank_zero_deprecation("DataModule property `dims` was deprecated in v1.5 and will be removed in v1.7.")self._train_transforms=train_transformsself._val_transforms=val_transformsself._test_transforms=test_transformsself._dims=dimsifdimsisnotNoneelse()# Pointer to the trainer objectself.trainer=None@propertydeftrain_transforms(self):"""Optional transforms (or collection of transforms) you can apply to train dataset. .. deprecated:: v1.5 Will be removed in v1.7.0. """rank_zero_deprecation("DataModule property `train_transforms` was deprecated in v1.5 and will be removed in v1.7.")returnself._train_transforms@train_transforms.setterdeftrain_transforms(self,t):rank_zero_deprecation("DataModule property `train_transforms` was deprecated in v1.5 and will be removed in v1.7.")self._train_transforms=t@propertydefval_transforms(self):"""Optional transforms (or collection of transforms) you can apply to validation dataset. .. deprecated:: v1.5 Will be removed in v1.7.0. """rank_zero_deprecation("DataModule property `val_transforms` was deprecated in v1.5 and will be removed in v1.7.")returnself._val_transforms@val_transforms.setterdefval_transforms(self,t):rank_zero_deprecation("DataModule property `val_transforms` was deprecated in v1.5 and will be removed in v1.7.")self._val_transforms=t@propertydeftest_transforms(self):"""Optional transforms (or collection of transforms) you can apply to test dataset. .. deprecated:: v1.5 Will be removed in v1.7.0. """rank_zero_deprecation("DataModule property `test_transforms` was deprecated in v1.5 and will be removed in v1.7.")returnself._test_transforms@test_transforms.setterdeftest_transforms(self,t):rank_zero_deprecation("DataModule property `test_transforms` was deprecated in v1.5 and will be removed in v1.7.")self._test_transforms=t@propertydefdims(self):"""A tuple describing the shape of your data. Extra functionality exposed in ``size``. .. deprecated:: v1.5 Will be removed in v1.7.0. """rank_zero_deprecation("DataModule property `dims` was deprecated in v1.5 and will be removed in v1.7.")returnself._dims@dims.setterdefdims(self,d):rank_zero_deprecation("DataModule property `dims` was deprecated in v1.5 and will be removed in v1.7.")self._dims=d
[docs]defsize(self,dim=None)->Union[Tuple,List[Tuple]]:"""Return the dimension of each input either as a tuple or list of tuples. You can index this just as you would with a torch tensor. .. deprecated:: v1.5 Will be removed in v1.7.0. """rank_zero_deprecation("DataModule property `size` was deprecated in v1.5 and will be removed in v1.7.")ifdimisnotNone:returnself.dims[dim]returnself.dims
[docs]@classmethoddefadd_argparse_args(cls,parent_parser:ArgumentParser,**kwargs)->ArgumentParser:"""Extends existing argparse by default `LightningDataModule` attributes."""returnadd_argparse_args(cls,parent_parser,**kwargs)
[docs]@classmethoddeffrom_argparse_args(cls,args:Union[Namespace,ArgumentParser],**kwargs):"""Create an instance from CLI arguments. Args: args: The parser or namespace to take arguments from. Only known arguments will be parsed and passed to the :class:`~pytorch_lightning.core.datamodule.LightningDataModule`. **kwargs: Additional keyword arguments that may override ones in the parser or namespace. These must be valid DataModule arguments. Example:: parser = ArgumentParser(add_help=False) parser = LightningDataModule.add_argparse_args(parser) module = LightningDataModule.from_argparse_args(args) """returnfrom_argparse_args(cls,args,**kwargs)
[docs]@classmethoddefget_init_arguments_and_types(cls)->List[Tuple[str,Tuple,Any]]:r"""Scans the DataModule signature and returns argument names, types and default values. Returns: List with tuples of 3 values: (argument name, set with argument types, argument default value). """returnget_init_arguments_and_types(cls)
[docs]@classmethoddeffrom_datasets(cls,train_dataset:Optional[Union[Dataset,Sequence[Dataset],Mapping[str,Dataset]]]=None,val_dataset:Optional[Union[Dataset,Sequence[Dataset]]]=None,test_dataset:Optional[Union[Dataset,Sequence[Dataset]]]=None,batch_size:int=1,num_workers:int=0,):r""" Create an instance from torch.utils.data.Dataset. Args: train_dataset: (optional) Dataset to be used for train_dataloader() val_dataset: (optional) Dataset or list of Dataset to be used for val_dataloader() test_dataset: (optional) Dataset or list of Dataset to be used for test_dataloader() batch_size: Batch size to use for each dataloader. Default is 1. num_workers: Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process. Number of CPUs available. """defdataloader(ds:Dataset,shuffle:bool=False)->DataLoader:shuffle&=notisinstance(ds,IterableDataset)returnDataLoader(ds,batch_size=batch_size,shuffle=shuffle,num_workers=num_workers,pin_memory=True)deftrain_dataloader():ifisinstance(train_dataset,Mapping):return{key:dataloader(ds,shuffle=True)forkey,dsintrain_dataset.items()}ifisinstance(train_dataset,Sequence):return[dataloader(ds,shuffle=True)fordsintrain_dataset]returndataloader(train_dataset,shuffle=True)defval_dataloader():ifisinstance(val_dataset,Sequence):return[dataloader(ds)fordsinval_dataset]returndataloader(val_dataset)deftest_dataloader():ifisinstance(test_dataset,Sequence):return[dataloader(ds)fordsintest_dataset]returndataloader(test_dataset)datamodule=cls()iftrain_datasetisnotNone:datamodule.train_dataloader=train_dataloaderifval_datasetisnotNone:datamodule.val_dataloader=val_dataloaderiftest_datasetisnotNone:datamodule.test_dataloader=test_dataloaderreturndatamodule
[docs]defstate_dict(self)->Dict[str,Any]:"""Called when saving a checkpoint, implement to generate and save datamodule state. Returns: A dictionary containing datamodule state. """return{}
[docs]defload_state_dict(self,state_dict:Dict[str,Any])->None:"""Called when loading a checkpoint, implement to reload datamodule state given datamodule state_dict. Args: state_dict: the datamodule state returned by ``state_dict``. """pass
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. Read PyTorch Lightning's Privacy Policy.