Shortcuts

Lightning Bolts

PyTorch Lightning Bolts, is our official collection of prebuilt models across many research domains.

pip install lightning-bolts

In bolts we have:

  • A collection of pretrained state-of-the-art models.

  • A collection of models designed to bootstrap your research.

  • A collection of callbacks, transforms, full datasets.

  • All models work on CPUs, TPUs, GPUs and 16-bit precision.


Quality control

The Lightning community builds bolts and contributes them to Bolts. The lightning team guarantees that contributions are:

  • Rigorously Tested (CPUs, GPUs, TPUs).

  • Rigorously Documented.

  • Standardized via PyTorch Lightning.

  • Optimized for speed.

  • Checked for correctness.


Example 1: Pretrained, prebuilt models

from pl_bolts.models import VAE, GPT2, ImageGPT, PixelCNN
from pl_bolts.models.self_supervised import AMDIM, CPCV2, SimCLR, MocoV2
from pl_bolts.models import LinearRegression, LogisticRegression
from pl_bolts.models.gans import GAN
from pl_bolts.callbacks import PrintTableMetricsCallback
from pl_bolts.datamodules import FashionMNISTDataModule, CIFAR10DataModule, ImagenetDataModule

Example 2: Extend for faster research

Bolts are contributed with benchmarks and continuous-integration tests. This means you can trust the implementations and use them to bootstrap your research much faster.

from pl_bolts.models import ImageGPT
from pl_bolts.self_supervised import SimCLR


class VideoGPT(ImageGPT):
    def training_step(self, batch, batch_idx):
        x, y = batch
        x = _shape_input(x)

        logits = self.gpt(x)
        simclr_features = self.simclr(x)

        # -----------------
        # do something new with GPT logits + simclr_features
        # -----------------

        loss = self.criterion(logits.view(-1, logits.size(-1)), x.view(-1).long())

        self.log("loss", loss)
        return loss

Example 3: Callbacks

We also have a collection of callbacks.

from pl_bolts.callbacks import PrintTableMetricsCallback
import pytorch_lightning as pl

trainer = pl.Trainer(callbacks=[PrintTableMetricsCallback()])

# loss│train_loss│val_loss│epoch
# ──────────────────────────────
# 2.2541470527648926│2.2541470527648926│2.2158432006835938│0