Shortcuts

Source code for pytorch_lightning.trainer.trainer

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Trainer to automate the training."""
import inspect
import logging
import os
import traceback
import warnings
from argparse import ArgumentParser, Namespace
from datetime import timedelta
from pathlib import Path
from typing import Any, Callable, cast, Dict, Iterable, List, Optional, Tuple, Union
from weakref import proxy

import torch
from torch.optim import Optimizer

import pytorch_lightning as pl
from pytorch_lightning.accelerators import Accelerator, IPUAccelerator
from pytorch_lightning.callbacks import Callback, EarlyStopping, ModelCheckpoint, ProgressBarBase
from pytorch_lightning.callbacks.prediction_writer import BasePredictionWriter
from pytorch_lightning.core.datamodule import LightningDataModule
from pytorch_lightning.core.optimizer import LightningOptimizer
from pytorch_lightning.loggers import LightningLoggerBase
from pytorch_lightning.loggers.base import DummyLogger, LoggerCollection
from pytorch_lightning.loggers.tensorboard import TensorBoardLogger
from pytorch_lightning.loops import PredictionLoop, TrainingBatchLoop, TrainingEpochLoop
from pytorch_lightning.loops.dataloader.evaluation_loop import EvaluationLoop
from pytorch_lightning.loops.fit_loop import FitLoop
from pytorch_lightning.plugins import DDPSpawnPlugin, ParallelPlugin, PLUGIN_INPUT, PrecisionPlugin, TrainingTypePlugin
from pytorch_lightning.profiler import (
    AdvancedProfiler,
    BaseProfiler,
    PassThroughProfiler,
    PyTorchProfiler,
    SimpleProfiler,
    XLAProfiler,
)
from pytorch_lightning.trainer.callback_hook import TrainerCallbackHookMixin
from pytorch_lightning.trainer.configuration_validator import verify_loop_configurations
from pytorch_lightning.trainer.connectors.accelerator_connector import AcceleratorConnector
from pytorch_lightning.trainer.connectors.callback_connector import CallbackConnector
from pytorch_lightning.trainer.connectors.checkpoint_connector import CheckpointConnector
from pytorch_lightning.trainer.connectors.data_connector import DataConnector
from pytorch_lightning.trainer.connectors.env_vars_connector import _defaults_from_env_vars
from pytorch_lightning.trainer.connectors.logger_connector import LoggerConnector
from pytorch_lightning.trainer.connectors.logger_connector.result import ResultCollection
from pytorch_lightning.trainer.connectors.signal_connector import SignalConnector
from pytorch_lightning.trainer.data_loading import TrainerDataLoadingMixin
from pytorch_lightning.trainer.model_hooks import TrainerModelHooksMixin
from pytorch_lightning.trainer.optimizers import TrainerOptimizersMixin
from pytorch_lightning.trainer.states import RunningStage, TrainerFn, TrainerState, TrainerStatus
from pytorch_lightning.tuner.auto_gpu_select import pick_multiple_gpus
from pytorch_lightning.tuner.lr_finder import _LRFinder
from pytorch_lightning.tuner.tuning import Tuner
from pytorch_lightning.utilities import (
    _IPU_AVAILABLE,
    _TPU_AVAILABLE,
    device_parser,
    DeviceType,
    DistributedType,
    GradClipAlgorithmType,
    parsing,
    rank_zero_deprecation,
    rank_zero_info,
    rank_zero_warn,
)
from pytorch_lightning.utilities.argparse import (
    add_argparse_args,
    from_argparse_args,
    parse_argparser,
    parse_env_variables,
)
from pytorch_lightning.utilities.cloud_io import get_filesystem
from pytorch_lightning.utilities.distributed import distributed_available
from pytorch_lightning.utilities.exceptions import ExitGracefullyException, MisconfigurationException
from pytorch_lightning.utilities.imports import _fault_tolerant_training
from pytorch_lightning.utilities.meta import materialize_module
from pytorch_lightning.utilities.model_helpers import is_overridden
from pytorch_lightning.utilities.seed import reset_seed
from pytorch_lightning.utilities.types import (
    _EVALUATE_OUTPUT,
    _PATH,
    _PREDICT_OUTPUT,
    EVAL_DATALOADERS,
    LRSchedulerTypeUnion,
    TRAIN_DATALOADERS,
)

log = logging.getLogger(__name__)
# warnings to ignore in trainer
warnings.filterwarnings(
    "ignore", message="torch.distributed.reduce_op is deprecated, please use torch.distributed.ReduceOp instead"
)


[docs]class Trainer( TrainerCallbackHookMixin, TrainerModelHooksMixin, TrainerOptimizersMixin, TrainerDataLoadingMixin, ): # Needed because of LightningOptimizer _lightning_optimizers = None
[docs] @_defaults_from_env_vars def __init__( self, logger: Union[LightningLoggerBase, Iterable[LightningLoggerBase], bool] = True, checkpoint_callback: Optional[bool] = None, enable_checkpointing: bool = True, callbacks: Optional[Union[List[Callback], Callback]] = None, default_root_dir: Optional[str] = None, gradient_clip_val: Optional[Union[int, float]] = None, gradient_clip_algorithm: Optional[str] = None, process_position: int = 0, num_nodes: int = 1, num_processes: int = 1, devices: Optional[Union[List[int], str, int]] = None, gpus: Optional[Union[List[int], str, int]] = None, auto_select_gpus: bool = False, tpu_cores: Optional[Union[List[int], str, int]] = None, ipus: Optional[int] = None, log_gpu_memory: Optional[str] = None, # TODO: Remove in 1.7 progress_bar_refresh_rate: Optional[int] = None, # TODO: remove in v1.7 enable_progress_bar: bool = True, overfit_batches: Union[int, float] = 0.0, track_grad_norm: Union[int, float, str] = -1, check_val_every_n_epoch: int = 1, fast_dev_run: Union[int, bool] = False, accumulate_grad_batches: Optional[Union[int, Dict[int, int]]] = None, max_epochs: Optional[int] = None, min_epochs: Optional[int] = None, max_steps: int = -1, min_steps: Optional[int] = None, max_time: Optional[Union[str, timedelta, Dict[str, int]]] = None, limit_train_batches: Union[int, float] = 1.0, limit_val_batches: Union[int, float] = 1.0, limit_test_batches: Union[int, float] = 1.0, limit_predict_batches: Union[int, float] = 1.0, val_check_interval: Union[int, float] = 1.0, flush_logs_every_n_steps: Optional[int] = None, log_every_n_steps: int = 50, accelerator: Optional[Union[str, Accelerator]] = None, strategy: Optional[Union[str, TrainingTypePlugin]] = None, sync_batchnorm: bool = False, precision: Union[int, str] = 32, enable_model_summary: bool = True, weights_summary: Optional[str] = "top", weights_save_path: Optional[str] = None, num_sanity_val_steps: int = 2, resume_from_checkpoint: Optional[Union[Path, str]] = None, profiler: Optional[Union[BaseProfiler, str]] = None, benchmark: bool = False, deterministic: bool = False, reload_dataloaders_every_n_epochs: int = 0, reload_dataloaders_every_epoch: bool = False, auto_lr_find: Union[bool, str] = False, replace_sampler_ddp: bool = True, detect_anomaly: bool = False, auto_scale_batch_size: Union[str, bool] = False, prepare_data_per_node: Optional[bool] = None, plugins: Optional[Union[PLUGIN_INPUT, List[PLUGIN_INPUT]]] = None, amp_backend: str = "native", amp_level: Optional[str] = None, move_metrics_to_cpu: bool = False, multiple_trainloader_mode: str = "max_size_cycle", stochastic_weight_avg: bool = False, terminate_on_nan: Optional[bool] = None, ): r""" Customize every aspect of training via flags. Args: accelerator: Supports passing different accelerator types ("cpu", "gpu", "tpu", "ipu", "auto") as well as custom accelerator instances. .. deprecated:: v1.5 Passing training strategies (e.g., 'ddp') to ``accelerator`` has been deprecated in v1.5.0 and will be removed in v1.7.0. Please use the ``strategy`` argument instead. accumulate_grad_batches: Accumulates grads every k batches or as set up in the dict. amp_backend: The mixed precision backend to use ("native" or "apex"). amp_level: The optimization level to use (O1, O2, etc...). By default it will be set to "O2" if ``amp_backend`` is set to "apex". auto_lr_find: If set to True, will make trainer.tune() run a learning rate finder, trying to optimize initial learning for faster convergence. trainer.tune() method will set the suggested learning rate in self.lr or self.learning_rate in the LightningModule. To use a different key set a string instead of True with the key name. auto_scale_batch_size: If set to True, will `initially` run a batch size finder trying to find the largest batch size that fits into memory. The result will be stored in self.batch_size in the LightningModule. Additionally, can be set to either `power` that estimates the batch size through a power search or `binsearch` that estimates the batch size through a binary search. auto_select_gpus: If enabled and ``gpus`` is an integer, pick available gpus automatically. This is especially useful when GPUs are configured to be in "exclusive mode", such that only one process at a time can access them. benchmark: If true enables cudnn.benchmark. callbacks: Add a callback or list of callbacks. checkpoint_callback: If ``True``, enable checkpointing. .. deprecated:: v1.5 ``checkpoint_callback`` has been deprecated in v1.5 and will be removed in v1.7. Please consider using ``enable_checkpointing`` instead. enable_checkpointing: If ``True``, enable checkpointing. It will configure a default ModelCheckpoint callback if there is no user-defined ModelCheckpoint in :paramref:`~pytorch_lightning.trainer.trainer.Trainer.callbacks`. check_val_every_n_epoch: Check val every n train epochs. default_root_dir: Default path for logs and weights when no logger/ckpt_callback passed. Default: ``os.getcwd()``. Can be remote file paths such as `s3://mybucket/path` or 'hdfs://path/' detect_anomaly: Enable anomaly detection for the autograd engine. deterministic: If ``True``, sets whether PyTorch operations must use deterministic algorithms. Default: ``False``. devices: Will be mapped to either `gpus`, `tpu_cores`, `num_processes` or `ipus`, based on the accelerator type. fast_dev_run: Runs n if set to ``n`` (int) else 1 if set to ``True`` batch(es) of train, val and test to find any bugs (ie: a sort of unit test). flush_logs_every_n_steps: How often to flush logs to disk (defaults to every 100 steps). .. deprecated:: v1.5 ``flush_logs_every_n_steps`` has been deprecated in v1.5 and will be removed in v1.7. Please configure flushing directly in the logger instead. gpus: Number of GPUs to train on (int) or which GPUs to train on (list or str) applied per node gradient_clip_val: The value at which to clip gradients. Passing ``gradient_clip_val=None`` disables gradient clipping. If using Automatic Mixed Precision (AMP), the gradients will be unscaled before. gradient_clip_algorithm: The gradient clipping algorithm to use. Pass ``gradient_clip_algorithm="value"`` to clip by value, and ``gradient_clip_algorithm="norm"`` to clip by norm. By default it will be set to ``"norm"``. limit_train_batches: How much of training dataset to check (float = fraction, int = num_batches). limit_val_batches: How much of validation dataset to check (float = fraction, int = num_batches). limit_test_batches: How much of test dataset to check (float = fraction, int = num_batches). limit_predict_batches: How much of prediction dataset to check (float = fraction, int = num_batches). logger: Logger (or iterable collection of loggers) for experiment tracking. A ``True`` value uses the default ``TensorBoardLogger``. ``False`` will disable logging. If multiple loggers are provided and the `save_dir` property of that logger is not set, local files (checkpoints, profiler traces, etc.) are saved in ``default_root_dir`` rather than in the ``log_dir`` of any of the individual loggers. log_gpu_memory: None, 'min_max', 'all'. Might slow performance. .. deprecated:: v1.5 Deprecated in v1.5.0 and will be removed in v1.7.0 Please use the ``DeviceStatsMonitor`` callback directly instead. log_every_n_steps: How often to log within steps (defaults to every 50 steps). prepare_data_per_node: If True, each LOCAL_RANK=0 will call prepare data. Otherwise only NODE_RANK=0, LOCAL_RANK=0 will prepare data .. deprecated:: v1.5 Deprecated in v1.5.0 and will be removed in v1.7.0 Please set ``prepare_data_per_node`` in LightningDataModule or LightningModule directly instead. process_position: Orders the progress bar when running multiple models on same machine. .. deprecated:: v1.5 ``process_position`` has been deprecated in v1.5 and will be removed in v1.7. Please pass :class:`~pytorch_lightning.callbacks.progress.TQDMProgressBar` with ``process_position`` directly to the Trainer's ``callbacks`` argument instead. progress_bar_refresh_rate: How often to refresh progress bar (in steps). Value ``0`` disables progress bar. Ignored when a custom progress bar is passed to :paramref:`~Trainer.callbacks`. Default: None, means a suitable value will be chosen based on the environment (terminal, Google COLAB, etc.). .. deprecated:: v1.5 ``progress_bar_refresh_rate`` has been deprecated in v1.5 and will be removed in v1.7. Please pass :class:`~pytorch_lightning.callbacks.progress.TQDMProgressBar` with ``refresh_rate`` directly to the Trainer's ``callbacks`` argument instead. To disable the progress bar, pass ``enable_progress_bar = False`` to the Trainer. enable_progress_bar: Whether to enable to progress bar by default. profiler: To profile individual steps during training and assist in identifying bottlenecks. overfit_batches: Overfit a fraction of training data (float) or a set number of batches (int). plugins: Plugins allow modification of core behavior like ddp and amp, and enable custom lightning plugins. precision: Double precision (64), full precision (32), half precision (16) or bfloat16 precision (bf16). Can be used on CPU, GPU or TPUs. max_epochs: Stop training once this number of epochs is reached. Disabled by default (None). If both max_epochs and max_steps are not specified, defaults to ``max_epochs = 1000``. To enable infinite training, set ``max_epochs = -1``. min_epochs: Force training for at least these many epochs. Disabled by default (None). If both min_epochs and min_steps are not specified, defaults to ``min_epochs = 1``. max_steps: Stop training after this number of steps. Disabled by default (-1). If ``max_steps = -1`` and ``max_epochs = None``, will default to ``max_epochs = 1000``. To enable infinite training, set ``max_epochs`` to ``-1``. min_steps: Force training for at least these number of steps. Disabled by default (None). max_time: Stop training after this amount of time has passed. Disabled by default (None). The time duration can be specified in the format DD:HH:MM:SS (days, hours, minutes seconds), as a :class:`datetime.timedelta`, or a dictionary with keys that will be passed to :class:`datetime.timedelta`. num_nodes: Number of GPU nodes for distributed training. num_processes: Number of processes for distributed training with ``accelerator="cpu"``. num_sanity_val_steps: Sanity check runs n validation batches before starting the training routine. Set it to `-1` to run all batches in all validation dataloaders. reload_dataloaders_every_n_epochs: Set to a non-negative integer to reload dataloaders every n epochs. reload_dataloaders_every_epoch: Set to True to reload dataloaders every epoch. .. deprecated:: v1.4 ``reload_dataloaders_every_epoch`` has been deprecated in v1.4 and will be removed in v1.6. Please use ``reload_dataloaders_every_n_epochs``. replace_sampler_ddp: Explicitly enables or disables sampler replacement. If not specified this will toggled automatically when DDP is used. By default it will add ``shuffle=True`` for train sampler and ``shuffle=False`` for val/test sampler. If you want to customize it, you can set ``replace_sampler_ddp=False`` and add your own distributed sampler. resume_from_checkpoint: Path/URL of the checkpoint from which training is resumed. If there is no checkpoint file at the path, an exception is raised. If resuming from mid-epoch checkpoint, training will start from the beginning of the next epoch. .. deprecated:: v1.5 ``resume_from_checkpoint`` is deprecated in v1.5 and will be removed in v1.7. Please pass the path to ``Trainer.fit(..., ckpt_path=...)`` instead. strategy: Supports different training strategies with aliases as well custom training type plugins. sync_batchnorm: Synchronize batch norm layers between process groups/whole world. terminate_on_nan: If set to True, will terminate training (by raising a `ValueError`) at the end of each training batch, if any of the parameters or the loss are NaN or +/-inf. .. deprecated:: v1.5 Trainer argument ``terminate_on_nan`` was deprecated in v1.5 and will be removed in 1.7. Please use ``detect_anomaly`` instead. detect_anomaly: Enable anomaly detection for the autograd engine. tpu_cores: How many TPU cores to train on (1 or 8) / Single TPU to train on [1] ipus: How many IPUs to train on. track_grad_norm: -1 no tracking. Otherwise tracks that p-norm. May be set to 'inf' infinity-norm. If using Automatic Mixed Precision (AMP), the gradients will be unscaled before logging them. val_check_interval: How often to check the validation set. Use float to check within a training epoch, use int to check every n steps (batches). enable_model_summary: Whether to enable model summarization by default. weights_summary: Prints a summary of the weights when training begins. .. deprecated:: v1.5 ``weights_summary`` has been deprecated in v1.5 and will be removed in v1.7. To disable the summary, pass ``enable_model_summary = False`` to the Trainer. To customize the summary, pass :class:`~pytorch_lightning.callbacks.model_summary.ModelSummary` directly to the Trainer's ``callbacks`` argument. weights_save_path: Where to save weights if specified. Will override default_root_dir for checkpoints only. Use this if for whatever reason you need the checkpoints stored in a different place than the logs written in `default_root_dir`. Can be remote file paths such as `s3://mybucket/path` or 'hdfs://path/' Defaults to `default_root_dir`. move_metrics_to_cpu: Whether to force internal logged metrics to be moved to cpu. This can save some gpu memory, but can make training slower. Use with attention. multiple_trainloader_mode: How to loop over the datasets when there are multiple train loaders. In 'max_size_cycle' mode, the trainer ends one epoch when the largest dataset is traversed, and smaller datasets reload when running out of their data. In 'min_size' mode, all the datasets reload when reaching the minimum length of datasets. stochastic_weight_avg: Whether to use `Stochastic Weight Averaging (SWA) <https://pytorch.org/blog/pytorch-1.6-now-includes-stochastic-weight-averaging/>`_. .. deprecated:: v1.5 ``stochastic_weight_avg`` has been deprecated in v1.5 and will be removed in v1.7. Please pass :class:`~pytorch_lightning.callbacks.stochastic_weight_avg.StochasticWeightAveraging` directly to the Trainer's ``callbacks`` argument instead. """ super().__init__() Trainer._log_api_event("init") self.state = TrainerState() gpu_ids, tpu_cores = self._parse_devices(gpus, auto_select_gpus, tpu_cores) # init connectors self._data_connector = DataConnector(self, multiple_trainloader_mode) self._accelerator_connector = AcceleratorConnector( num_processes, devices, tpu_cores, ipus, accelerator, strategy, gpus, gpu_ids, num_nodes, sync_batchnorm, benchmark, replace_sampler_ddp, deterministic, precision, amp_backend, amp_level, plugins, ) self.logger_connector = LoggerConnector(self, log_gpu_memory) self._callback_connector = CallbackConnector(self) self.checkpoint_connector = CheckpointConnector(self, resume_from_checkpoint) self.signal_connector = SignalConnector(self) self.tuner = Tuner(self) fit_loop = FitLoop( min_epochs=(1 if (min_epochs is None and min_steps is None and max_time is None) else min_epochs), max_epochs=( max_epochs if max_epochs is not None else (1000 if (max_steps == -1 and max_time is None) else -1) ), ) training_epoch_loop = TrainingEpochLoop(min_steps, max_steps) training_batch_loop = TrainingBatchLoop() training_validation_loop = EvaluationLoop() training_epoch_loop.connect(batch_loop=training_batch_loop, val_loop=training_validation_loop) fit_loop.connect(epoch_loop=training_epoch_loop) # default .fit() loop self.fit_loop = fit_loop # default .validate() loop self.validate_loop = EvaluationLoop() # default .test() loop self.test_loop = EvaluationLoop() # default .predict() loop self.predict_loop = PredictionLoop() # Needed because of LightningOptimizer self._lightning_optimizers = None # .validate() and .test() set this when they load a checkpoint self.validated_ckpt_path: Optional[str] = None self.tested_ckpt_path: Optional[str] = None self.predicted_ckpt_path: Optional[str] = None # todo: remove in v1.7 self._weights_summary: Optional[str] = None # init callbacks # Declare attributes to be set in _callback_connector on_trainer_init self._callback_connector.on_trainer_init( callbacks, checkpoint_callback, enable_checkpointing, enable_progress_bar, progress_bar_refresh_rate, process_position, default_root_dir, weights_save_path, enable_model_summary, weights_summary, stochastic_weight_avg, max_time, accumulate_grad_batches, ) # hook self.on_init_start() # init optimizer + lr scheduler related flags self.lr_schedulers = [] self.optimizers = [] self.optimizer_frequencies = [] # init data flags self._data_connector.on_trainer_init( check_val_every_n_epoch, reload_dataloaders_every_n_epochs, reload_dataloaders_every_epoch, prepare_data_per_node, ) if terminate_on_nan is not None: rank_zero_deprecation( "Trainer argument `terminate_on_nan` was deprecated in v1.5 and will be removed in 1.7." " Please use `Trainer(detect_anomaly=True)` instead." ) if not isinstance(terminate_on_nan, bool): raise TypeError(f"`terminate_on_nan` should be a bool, got {terminate_on_nan}.") # gradient clipping if gradient_clip_val is not None and not isinstance(gradient_clip_val, (int, float)): raise TypeError(f"`gradient_clip_val` should be an int or a float. Got {gradient_clip_val}.") if gradient_clip_algorithm is not None and not GradClipAlgorithmType.supported_type( gradient_clip_algorithm.lower() ): raise MisconfigurationException( f"`gradient_clip_algorithm` {gradient_clip_algorithm} is invalid. " f"Allowed algorithms: {GradClipAlgorithmType.supported_types()}." ) # gradient norm tracking if track_grad_norm != -1 and not ( (isinstance(track_grad_norm, (int, float)) or track_grad_norm == "inf") and float(track_grad_norm) > 0 ): raise MisconfigurationException( f"`track_grad_norm` must be a positive number or 'inf' (infinity norm). Got {track_grad_norm}." ) self._terminate_on_nan = terminate_on_nan self.gradient_clip_val = gradient_clip_val self.gradient_clip_algorithm = ( GradClipAlgorithmType(gradient_clip_algorithm.lower()) if gradient_clip_algorithm is not None else gradient_clip_algorithm ) self.track_grad_norm: float = float(track_grad_norm) self._detect_anomaly: bool = detect_anomaly self._setup_on_init(num_sanity_val_steps) # configure tuner self.tuner.on_trainer_init(auto_lr_find, auto_scale_batch_size) # configure profiler self.__init_profiler(profiler) # init logger flags self.logger_connector.on_trainer_init(logger, flush_logs_every_n_steps, log_every_n_steps, move_metrics_to_cpu) # init debugging flags self._init_debugging_flags( limit_train_batches, limit_val_batches, limit_test_batches, limit_predict_batches, val_check_interval, overfit_batches, fast_dev_run, ) # Callback system self.on_init_end()
def _init_debugging_flags( self, limit_train_batches, limit_val_batches, limit_test_batches, limit_predict_batches, val_check_interval, overfit_batches, fast_dev_run, ): if not isinstance(fast_dev_run, (bool, int)): raise MisconfigurationException( f"fast_dev_run={fast_dev_run} is not a valid configuration. It should be either a bool or an int >= 0" ) if isinstance(fast_dev_run, int) and (fast_dev_run < 0): raise MisconfigurationException( f"fast_dev_run={fast_dev_run} is not a valid configuration. It should be >= 0." ) self.fast_dev_run = fast_dev_run fast_dev_run = int(fast_dev_run) # set fast_dev_run=True when it is 1, used while logging if fast_dev_run == 1: self.fast_dev_run = True if fast_dev_run: limit_train_batches = fast_dev_run limit_val_batches = fast_dev_run limit_test_batches = fast_dev_run limit_predict_batches = fast_dev_run self.fit_loop.max_steps = fast_dev_run self.num_sanity_val_steps = 0 self.fit_loop.max_epochs = 1 val_check_interval = 1.0 self.check_val_every_n_epoch = 1 self.logger = DummyLogger() if self.logger is not None else None rank_zero_info( "Running in fast_dev_run mode: will run a full train," f" val, test and prediction loop using {fast_dev_run} batch(es)." ) self.limit_train_batches = _determine_batch_limits(limit_train_batches, "limit_train_batches") self.limit_val_batches = _determine_batch_limits(limit_val_batches, "limit_val_batches") self.limit_test_batches = _determine_batch_limits(limit_test_batches, "limit_test_batches") self.limit_predict_batches = _determine_batch_limits(limit_predict_batches, "limit_predict_batches") self.val_check_interval = _determine_batch_limits(val_check_interval, "val_check_interval") self.overfit_batches = _determine_batch_limits(overfit_batches, "overfit_batches") self.determine_data_use_amount(self.overfit_batches)
[docs] def determine_data_use_amount(self, overfit_batches: float) -> None: """Use less data for debugging purposes.""" if overfit_batches > 0: self.limit_train_batches = overfit_batches self.limit_val_batches = overfit_batches self.limit_test_batches = overfit_batches
def _setup_on_init(self, num_sanity_val_steps: int) -> None: self._log_device_info() self.should_stop = False self.state = TrainerState() self.num_training_batches = float("inf") self.train_dataloader = None if num_sanity_val_steps == -1: self.num_sanity_val_steps = float("inf") else: self.num_sanity_val_steps = num_sanity_val_steps self.num_sanity_val_batches = [] self.num_test_batches = [] self.num_val_batches = [] self.test_dataloaders = None self.val_dataloaders = None # when true, print evaluation results in .validate() and .test() self.verbose_evaluate = True self.num_predict_batches = [] def _call_and_handle_interrupt(self, trainer_fn: Callable, *args: Any, **kwargs: Any) -> Any: r""" Error handling, intended to be used only for main trainer function entry points (fit, validate, test, predict) as all errors should funnel through them Args: trainer_fn: one of (fit, validate, test, predict) *args: positional arguments to be passed to the `trainer_fn` **kwargs: keyword arguments to be passed to `trainer_fn` """ try: return trainer_fn(*args, **kwargs) # TODO: treat KeyboardInterrupt as BaseException (delete the code below) in v1.7 except KeyboardInterrupt as exception: rank_zero_warn("Detected KeyboardInterrupt, attempting graceful shutdown...") # user could press Ctrl+c many times... only shutdown once if not self.interrupted: self.state.status = TrainerStatus.INTERRUPTED self.on_keyboard_interrupt() self.on_exception(exception) except BaseException as exception: self.state.status = TrainerStatus.INTERRUPTED if distributed_available() and self.world_size > 1: # try syncing remaing processes, kill otherwise self.training_type_plugin.reconciliate_processes(traceback.format_exc()) self._on_exception() # reset bookkeeping self.state.stage = None self.on_exception(exception) raise
[docs] def fit( self, model: "pl.LightningModule", train_dataloaders: Optional[Union[TRAIN_DATALOADERS, LightningDataModule]] = None, val_dataloaders: Optional[EVAL_DATALOADERS] = None, datamodule: Optional[LightningDataModule] = None, train_dataloader=None, # TODO: remove with 1.6 ckpt_path: Optional[str] = None, ) -> None: r""" Runs the full optimization routine. Args: model: Model to fit. train_dataloaders: A collection of :class:`torch.utils.data.DataLoader` or a :class:`~pytorch_lightning.core.datamodule.LightningDataModule` specifying training samples. In the case of multiple dataloaders, please see this :ref:`page <multiple-training-dataloaders>`. val_dataloaders: A :class:`torch.utils.data.DataLoader` or a sequence of them specifying validation samples. ckpt_path: Path/URL of the checkpoint from which training is resumed. If there is no checkpoint file at the path, an exception is raised. If resuming from mid-epoch checkpoint, training will start from the beginning of the next epoch. datamodule: An instance of :class:`~pytorch_lightning.core.datamodule.LightningDataModule`. """ if train_dataloader is not None: rank_zero_deprecation( "`trainer.fit(train_dataloader)` is deprecated in v1.4 and will be removed in v1.6." " Use `trainer.fit(train_dataloaders)` instead. HINT: added 's'" ) train_dataloaders = train_dataloader self._call_and_handle_interrupt( self._fit_impl, model, train_dataloaders, val_dataloaders, datamodule, ckpt_path )
def _fit_impl( self, model: "pl.LightningModule", train_dataloaders: Optional[Union[TRAIN_DATALOADERS, LightningDataModule]] = None, val_dataloaders: Optional[EVAL_DATALOADERS] = None, datamodule: Optional[LightningDataModule] = None, ckpt_path: Optional[str] = None, ) -> None: Trainer._log_api_event("fit") self.state.fn = TrainerFn.FITTING self.state.status = TrainerStatus.RUNNING self.training = True # if a datamodule comes in as the second arg, then fix it for the user if isinstance(train_dataloaders, LightningDataModule): datamodule = train_dataloaders train_dataloaders = None # If you supply a datamodule you can't supply train_dataloader or val_dataloaders if (train_dataloaders is not None or val_dataloaders is not None) and datamodule is not None: raise MisconfigurationException( "You cannot pass `train_dataloader` or `val_dataloaders` to `trainer.fit(datamodule=...)`" ) # links data to the trainer self._data_connector.attach_data( model, train_dataloaders=train_dataloaders, val_dataloaders=val_dataloaders, datamodule=datamodule ) # TODO: ckpt_path only in v1.7 ckpt_path = ckpt_path or self.resume_from_checkpoint self._run(model, ckpt_path=ckpt_path) assert self.state.stopped self.training = False
[docs] def validate( self, model: Optional["pl.LightningModule"] = None, dataloaders: Optional[Union[EVAL_DATALOADERS, LightningDataModule]] = None, ckpt_path: Optional[str] = None, verbose: bool = True, datamodule: Optional[LightningDataModule] = None, val_dataloaders=None, # TODO: remove with 1.6 ) -> _EVALUATE_OUTPUT: r""" Perform one evaluation epoch over the validation set. Args: model: The model to validate. dataloaders: A :class:`torch.utils.data.DataLoader` or a sequence of them, or a :class:`~pytorch_lightning.core.datamodule.LightningDataModule` specifying validation samples. ckpt_path: Either ``best`` or path to the checkpoint you wish to validate. If ``None`` and the model instance was passed, use the current weights. Otherwise, the best model checkpoint from the previous ``trainer.fit`` call will be loaded if a checkpoint callback is configured. verbose: If True, prints the validation results. datamodule: An instance of :class:`~pytorch_lightning.core.datamodule.LightningDataModule`. Returns: List of dictionaries with metrics logged during the validation phase, e.g., in model- or callback hooks like :meth:`~pytorch_lightning.core.lightning.LightningModule.validation_step`, :meth:`~pytorch_lightning.core.lightning.LightningModule.validation_epoch_end`, etc. The length of the list corresponds to the number of validation dataloaders used. """ if val_dataloaders is not None: rank_zero_deprecation( "`trainer.validate(val_dataloaders)` is deprecated in v1.4 and will be removed in v1.6." " Use `trainer.validate(dataloaders)` instead." ) dataloaders = val_dataloaders return self._call_and_handle_interrupt(self._validate_impl, model, dataloaders, ckpt_path, verbose, datamodule)
def _validate_impl( self, model: Optional["pl.LightningModule"] = None, dataloaders: Optional[Union[EVAL_DATALOADERS, LightningDataModule]] = None, ckpt_path: Optional[str] = None, verbose: bool = True, datamodule: Optional[LightningDataModule] = None, ) -> _EVALUATE_OUTPUT: # -------------------- # SETUP HOOK # -------------------- Trainer._log_api_event("validate") self.verbose_evaluate = verbose self.state.fn = TrainerFn.VALIDATING self.state.status = TrainerStatus.RUNNING self.validating = True # if a datamodule comes in as the second arg, then fix it for the user if isinstance(dataloaders, LightningDataModule): datamodule = dataloaders dataloaders = None # If you supply a datamodule you can't supply val_dataloaders if dataloaders is not None and datamodule: raise MisconfigurationException("You cannot pass both `trainer.validate(dataloaders=..., datamodule=...)`") model_provided = model is not None model = model or self.lightning_module if model is None: raise MisconfigurationException( "`model` must be provided to `trainer.validate()` when it hasn't been passed in a previous run" ) # links data to the trainer self._data_connector.attach_data(model, val_dataloaders=dataloaders, datamodule=datamodule) self.validated_ckpt_path = self.__set_ckpt_path( ckpt_path, model_provided=model_provided, model_connected=self.lightning_module is not None ) # run validate results = self._run(model, ckpt_path=self.validated_ckpt_path) assert self.state.stopped self.validating = False return results
[docs] def test( self, model: Optional["pl.LightningModule"] = None, dataloaders: Optional[Union[EVAL_DATALOADERS, LightningDataModule]] = None, ckpt_path: Optional[str] = None, verbose: bool = True, datamodule: Optional[LightningDataModule] = None, test_dataloaders=None, # TODO: remove with 1.6 ) -> _EVALUATE_OUTPUT: r""" Perform one evaluation epoch over the test set. It's separated from fit to make sure you never run on your test set until you want to. Args: model: The model to test. dataloaders: A :class:`torch.utils.data.DataLoader` or a sequence of them, or a :class:`~pytorch_lightning.core.datamodule.LightningDataModule` specifying test samples. ckpt_path: Either ``best`` or path to the checkpoint you wish to test. If ``None`` and the model instance was passed, use the current weights. Otherwise, the best model checkpoint from the previous ``trainer.fit`` call will be loaded if a checkpoint callback is configured. verbose: If True, prints the test results. datamodule: An instance of :class:`~pytorch_lightning.core.datamodule.LightningDataModule`. Returns: List of dictionaries with metrics logged during the test phase, e.g., in model- or callback hooks like :meth:`~pytorch_lightning.core.lightning.LightningModule.test_step`, :meth:`~pytorch_lightning.core.lightning.LightningModule.test_epoch_end`, etc. The length of the list corresponds to the number of test dataloaders used. """ if test_dataloaders is not None: rank_zero_deprecation( "`trainer.test(test_dataloaders)` is deprecated in v1.4 and will be removed in v1.6." " Use `trainer.test(dataloaders)` instead." ) dataloaders = test_dataloaders return self._call_and_handle_interrupt(self._test_impl, model, dataloaders, ckpt_path, verbose, datamodule)
def _test_impl( self, model: Optional["pl.LightningModule"] = None, dataloaders: Optional[Union[EVAL_DATALOADERS, LightningDataModule]] = None, ckpt_path: Optional[str] = None, verbose: bool = True, datamodule: Optional[LightningDataModule] = None, ) -> _EVALUATE_OUTPUT: # -------------------- # SETUP HOOK # -------------------- Trainer._log_api_event("test") self.verbose_evaluate = verbose self.state.fn = TrainerFn.TESTING self.state.status = TrainerStatus.RUNNING self.testing = True # if a datamodule comes in as the second arg, then fix it for the user if isinstance(dataloaders, LightningDataModule): datamodule = dataloaders dataloaders = None # If you supply a datamodule you can't supply test_dataloaders if dataloaders is not None and datamodule: raise MisconfigurationException("You cannot pass both `trainer.test(dataloaders=..., datamodule=...)`") model_provided = model is not None model = model or self.lightning_module if model is None: raise MisconfigurationException( "`model` must be provided to `trainer.test()` when it hasn't been passed in a previous run" ) # links data to the trainer self._data_connector.attach_data(model, test_dataloaders=dataloaders, datamodule=datamodule) self.tested_ckpt_path = self.__set_ckpt_path( ckpt_path, model_provided=model_provided, model_connected=self.lightning_module is not None ) # run test results = self._run(model, ckpt_path=self.tested_ckpt_path) assert self.state.stopped self.testing = False return results
[docs] def predict( self, model: Optional["pl.LightningModule"] = None, dataloaders: Optional[Union[EVAL_DATALOADERS, LightningDataModule]] = None, datamodule: Optional[LightningDataModule] = None, return_predictions: Optional[bool] = None, ckpt_path: Optional[str] = None, ) -> Optional[_PREDICT_OUTPUT]: r""" Run inference on your data. This will call the model forward function to compute predictions. Useful to perform distributed and batched predictions. Logging is disabled in the predict hooks. Args: model: The model to predict with. dataloaders: A :class:`torch.utils.data.DataLoader` or a sequence of them, or a :class:`~pytorch_lightning.core.datamodule.LightningDataModule` specifying prediction samples. datamodule: The datamodule with a predict_dataloader method that returns one or more dataloaders. return_predictions: Whether to return predictions. ``True`` by default except when an accelerator that spawns processes is used (not supported). ckpt_path: Either ``best`` or path to the checkpoint you wish to predict. If ``None`` and the model instance was passed, use the current weights. Otherwise, the best model checkpoint from the previous ``trainer.fit`` call will be loaded if a checkpoint callback is configured. Returns: Returns a list of dictionaries, one for each provided dataloader containing their respective predictions. """ return self._call_and_handle_interrupt( self._predict_impl, model, dataloaders, datamodule, return_predictions, ckpt_path )
def _predict_impl( self, model: Optional["pl.LightningModule"] = None, dataloaders: Optional[Union[EVAL_DATALOADERS, LightningDataModule]] = None, datamodule: Optional[LightningDataModule] = None, return_predictions: Optional[bool] = None, ckpt_path: Optional[str] = None, ) -> Optional[_PREDICT_OUTPUT]: # -------------------- # SETUP HOOK # -------------------- Trainer._log_api_event("predict") self.state.fn = TrainerFn.PREDICTING self.state.status = TrainerStatus.RUNNING self.predicting = True self.predict_loop.return_predictions = return_predictions # if a datamodule comes in as the second arg, then fix it for the user if isinstance(dataloaders, LightningDataModule): datamodule = dataloaders dataloaders = None if dataloaders is not None and datamodule: raise MisconfigurationException("You cannot pass both `trainer.predict(dataloaders=..., datamodule=...)`") model_provided = model is not None model = model or self.lightning_module if model is None: raise MisconfigurationException( "`model` must be provided to `trainer.predict()` when it hasn't been passed in a previous run" ) # links data to the trainer self._data_connector.attach_data(model, predict_dataloaders=dataloaders, datamodule=datamodule) self.predicted_ckpt_path = self.__set_ckpt_path( ckpt_path, model_provided=model_provided, model_connected=self.lightning_module is not None ) results = self._run(model, ckpt_path=self.predicted_ckpt_path) assert self.state.stopped self.predicting = False return results
[docs] def tune( self, model: "pl.LightningModule", train_dataloaders: Optional[Union[TRAIN_DATALOADERS, LightningDataModule]] = None, val_dataloaders: Optional[EVAL_DATALOADERS] = None, datamodule: Optional[LightningDataModule] = None, scale_batch_size_kwargs: Optional[Dict[str, Any]] = None, lr_find_kwargs: Optional[Dict[str, Any]] = None, train_dataloader=None, # TODO: remove with 1.6 ) -> Dict[str, Optional[Union[int, _LRFinder]]]: r""" Runs routines to tune hyperparameters before training. Args: model: Model to tune. train_dataloaders: A collection of :class:`torch.utils.data.DataLoader` or a :class:`~pytorch_lightning.core.datamodule.LightningDataModule` specifying training samples. In the case of multiple dataloaders, please see this :ref:`page <multiple-training-dataloaders>`. val_dataloaders: A :class:`torch.utils.data.DataLoader` or a sequence of them specifying validation samples. datamodule: An instance of :class:`~pytorch_lightning.core.datamodule.LightningDataModule`. scale_batch_size_kwargs: Arguments for :func:`~pytorch_lightning.tuner.batch_size_scaling.scale_batch_size` lr_find_kwargs: Arguments for :func:`~pytorch_lightning.tuner.lr_finder.lr_find` """ Trainer._log_api_event("tune") self.state.fn = TrainerFn.TUNING self.state.status = TrainerStatus.RUNNING self.tuning = True if train_dataloader is not None: rank_zero_deprecation( "`trainer.tune(train_dataloader)` is deprecated in v1.4 and will be removed in v1.6." " Use `trainer.tune(train_dataloaders)` instead. HINT: added 's'" ) train_dataloaders = train_dataloader # if a datamodule comes in as the second arg, then fix it for the user if isinstance(train_dataloaders, LightningDataModule): datamodule = train_dataloaders train_dataloaders = None # If you supply a datamodule you can't supply train_dataloader or val_dataloaders if (train_dataloaders is not None or val_dataloaders is not None) and datamodule is not None: raise MisconfigurationException( "You cannot pass `train_dataloader` or `val_dataloaders` to `trainer.tune(datamodule=...)`" ) # links data to the trainer self._data_connector.attach_data( model, train_dataloaders=train_dataloaders, val_dataloaders=val_dataloaders, datamodule=datamodule ) result = self.tuner._tune(model, scale_batch_size_kwargs=scale_batch_size_kwargs, lr_find_kwargs=lr_find_kwargs) assert self.state.stopped self.tuning = False return result
def _restore_modules_and_callbacks(self, checkpoint_path: Optional[_PATH] = None) -> None: # restore modules after setup self.checkpoint_connector.resume_start(checkpoint_path) self.checkpoint_connector.restore_model() self.checkpoint_connector.restore_datamodule() if self.state.fn == TrainerFn.FITTING: # restore callback states self.checkpoint_connector.restore_callbacks() def _run( self, model: "pl.LightningModule", ckpt_path: Optional[str] = None ) -> Optional[Union[_EVALUATE_OUTPUT, _PREDICT_OUTPUT]]: # clean hparams if hasattr(model, "hparams"): parsing.clean_namespace(model.hparams) verify_loop_configurations(self, model) # attach model log function to callback self._callback_connector.attach_model_logging_functions(model) # attach model to the training type plugin self.training_type_plugin.connect(model) # hook self._data_connector.prepare_data() self._callback_connector._attach_model_callbacks() # ---------------------------- # SET UP TRAINING # ---------------------------- self.call_hook("on_before_accelerator_backend_setup") self.accelerator.setup_environment() self._call_setup_hook() # allow user to setup lightning_module in accelerator environment # check if we should delay restoring checkpoint till later if not self.training_type_plugin.restore_checkpoint_after_pre_dispatch: self._restore_modules_and_callbacks(ckpt_path) self._call_configure_sharded_model() # allow user to setup in model sharded environment self.accelerator.setup(self) # ---------------------------- # INSPECT THE CORE LOOPS # ---------------------------- fr""" Lightning internal flow looks like this: {Trainer.fit} or {Trainer.test} or {Trainer.predict} || | || create accelerator || | || {self._dispatch} || | || LIGHTNING {self.training_type_plugin.start_training} || or {self.training_type_plugin.start_evaluating} || or {self.training_type_plugin.start_predicting} || FLOW | || {self.run_stage} || | || DIRECTION {self._run_train} || or {self._run_evaluate} || or {self._run_predict} || | || results \/ This is used to guide readers to the core loops: train, test, predict. {self._run_predict} is the simplest to understand, use `Go to Definition` to read it :) Search for `start_training` or `start_evaluating` or `start_predicting` in `pytorch_lightning/plugins/training_type_plugin` to find accelerator dispatch functions. """ # ---------------------------- # TRAIN # ---------------------------- # reset logger connector self.logger_connector.reset_results() self.logger_connector.reset_metrics() # hook if self.state.fn == TrainerFn.FITTING: self.call_hook("on_fit_start") # plugin will setup fitting (e.g. ddp will launch child processes) self._pre_dispatch() if self.training_type_plugin.restore_checkpoint_after_pre_dispatch: self._restore_modules_and_callbacks(ckpt_path) # restore optimizers, etc. self.checkpoint_connector.restore_training_state() self.checkpoint_connector.resume_end() # dispatch `start_training` or `start_evaluating` or `start_predicting` self._dispatch() # plugin will finalized fitting (e.g. ddp_spawn will load trained model) self._post_dispatch() # ---------------------------- # POST-Training CLEAN UP # ---------------------------- # hook if self.state.fn == TrainerFn.FITTING: self.call_hook("on_fit_end") # teardown if necessary (similar calls for spawn plugins are excluded as they have # been included at the end of `new_process` functions) if not isinstance(self.training_type_plugin, DDPSpawnPlugin): self._call_teardown_hook() if self.state.status != TrainerStatus.INTERRUPTED: self.state.status = TrainerStatus.FINISHED self.state.stage = None return self.training_type_plugin.results def _pre_dispatch(self): self.accelerator.pre_dispatch(self) self._log_hyperparams() def _log_hyperparams(self) -> None: # log hyper-parameters hparams_initial = None if self.logger is not None: # save exp to get started (this is where the first experiment logs are written) datamodule_log_hyperparams = self.datamodule._log_hyperparams if self.datamodule is not None else False if self.lightning_module._log_hyperparams and datamodule_log_hyperparams: datamodule_hparams = self.datamodule.hparams_initial lightning_hparams = self.lightning_module.hparams_initial inconsistent_keys = [] for key in lightning_hparams.keys() & datamodule_hparams.keys(): lm_val, dm_val = lightning_hparams[key], datamodule_hparams[key] if type(lm_val) != type(dm_val): inconsistent_keys.append(key) elif isinstance(lm_val, torch.Tensor) and id(lm_val) != id(dm_val): inconsistent_keys.append(key) elif lm_val != dm_val: inconsistent_keys.append(key) if inconsistent_keys: raise MisconfigurationException( f"Error while merging hparams: the keys {inconsistent_keys} are present " "in both the LightningModule's and LightningDataModule's hparams " "but have different values." ) hparams_initial = {**lightning_hparams, **datamodule_hparams} elif self.lightning_module._log_hyperparams: hparams_initial = self.lightning_module.hparams_initial elif datamodule_log_hyperparams: hparams_initial = self.datamodule.hparams_initial if hparams_initial is not None: self.logger.log_hyperparams(hparams_initial) self.logger.log_graph(self.lightning_module) self.logger.save() def _post_dispatch(self): self.accelerator.post_dispatch(self) # these `teardown` calls are here instead of in `_call_teardown_hook` since they are internal teardowns # which need to happen before. self.accelerator.teardown() self._data_connector.teardown() self._active_loop.teardown() self.logger_connector.teardown() def _dispatch(self): if self.evaluating: self.training_type_plugin.start_evaluating(self) elif self.predicting: self.training_type_plugin.start_predicting(self) else: self.training_type_plugin.start_training(self) def run_stage(self): self.accelerator.dispatch(self) self.__setup_profiler() if self.evaluating: return self._run_evaluate() if self.predicting: return self._run_predict() return self._run_train() def _pre_training_routine(self): # wait for all to join if on distributed self.training_type_plugin.barrier("setup_training") # register signals self.signal_connector.register_signal_handlers() # -------------------------- # Pre-train # -------------------------- self.call_hook("on_pretrain_routine_start") self.call_hook("on_pretrain_routine_end") def _run_train(self) -> None: self._pre_training_routine() if not self.is_global_zero and self.progress_bar_callback is not None: self.progress_bar_callback.disable() self._run_sanity_check(self.lightning_module) # enable train mode self.model.train() torch.set_grad_enabled(True) self.fit_loop.trainer = self with torch.autograd.set_detect_anomaly(self._detect_anomaly): self.fit_loop.run() def _run_evaluate(self) -> _EVALUATE_OUTPUT: if not self.is_global_zero and self.progress_bar_callback is not None: self.progress_bar_callback.disable() assert self.evaluating # reload dataloaders self._evaluation_loop._reload_evaluation_dataloaders() # reset trainer on this loop and all child loops in case user connected a custom loop self._evaluation_loop.trainer = self with self.profiler.profile(f"run_{self.state.stage}_evaluation"), torch.no_grad(): eval_loop_results = self._evaluation_loop.run() # remove the tensors from the eval results for result in eval_loop_results: if isinstance(result, dict): for k, v in result.items(): if isinstance(v, torch.Tensor): result[k] = v.cpu().item() return eval_loop_results def _run_predict(self) -> Optional[_PREDICT_OUTPUT]: self.reset_predict_dataloader(self.lightning_module) # reset trainer on this loop and all child loops in case user connected a custom loop self.predict_loop.trainer = self with torch.no_grad(): return self.predict_loop.run() def _run_sanity_check(self, ref_model): using_val_step = self._data_connector._val_dataloader_source.is_defined() and is_overridden( "validation_step", ref_model ) should_sanity_check = using_val_step and self.num_sanity_val_steps > 0 and self.limit_val_batches > 0 # run tiny validation (if validation defined) # to make sure program won't crash during val if should_sanity_check: stage = self.state.stage self.sanity_checking = True # reset logger connector self.logger_connector.reset_results() self.logger_connector.reset_metrics() self.call_hook("on_sanity_check_start") # reload dataloaders self._evaluation_loop._reload_evaluation_dataloaders() # run eval step with torch.no_grad(): self._evaluation_loop.run() self.call_hook("on_sanity_check_end") # reset logger connector self.logger_connector.reset_results() self.logger_connector.reset_metrics() # reset the seed to what it was before sanity check # prevents sanity check to affect random sampling in training reset_seed() # restore the previous stage when the sanity check if finished self.state.stage = stage def __set_ckpt_path(self, ckpt_path: Optional[str], model_provided: bool, model_connected: bool) -> Optional[str]: if model_provided and ckpt_path is None: # use passed model to function without loading weights return fn = self.state.fn.value if model_connected and ckpt_path is None: rank_zero_warn( f"`.{fn}(ckpt_path=None)` was called without a model." " The best model of the previous `fit` call will be used." f" You can pass `{fn}(ckpt_path='best')` to use and best model" " checkpoint and avoid this warning or" " `ckpt_path=trainer.model_checkpoint.last_model_path` to use the last model." ) ckpt_path = "best" if ckpt_path == "best": # if user requests the best checkpoint but we don't have it, error if not self.checkpoint_callback: raise MisconfigurationException( f'`.{fn}(ckpt_path="best")` is set but `ModelCheckpoint` is not configured.' ) if not self.checkpoint_callback.best_model_path: if self.fast_dev_run: raise MisconfigurationException( f"You cannot execute `.{fn}()` with `fast_dev_run=True` unless you do" f" `.{fn}(ckpt_path=PATH)` as no checkpoint path was generated during fitting." ) raise MisconfigurationException( f'`.{fn}(ckpt_path="best")` is set but `ModelCheckpoint` is not configured to save the best model.' ) # load best weights ckpt_path = self.checkpoint_callback.best_model_path if not ckpt_path: raise MisconfigurationException( f"`.{fn}()` found no path for the best weights: {ckpt_path!r}. Please" f" specify a path for a checkpoint `.{fn}(ckpt_path=PATH)`" ) return ckpt_path def _call_setup_hook(self) -> None: fn = self.state.fn._setup_fn self.training_type_plugin.barrier("pre_setup") if self.datamodule is not None: self.datamodule.setup(stage=fn) self.call_hook("setup", stage=fn) self.training_type_plugin.barrier("post_setup") def _call_configure_sharded_model(self) -> None: with self.accelerator.model_sharded_context(): materialize_module(self.lightning_module) self.call_hook("configure_sharded_model") self.call_hook("on_configure_sharded_model") def _call_teardown_hook(self) -> None: fn = self.state.fn._setup_fn if self.datamodule is not None: self.datamodule.teardown(stage=fn) self.call_hook("teardown", stage=fn) self.lightning_module._current_fx_name = None self.lightning_module._current_dataloader_idx = None # these could have become stale if metrics are defined in `setup` self.lightning_module._metric_attributes = None # todo: TPU 8 cores hangs in flush with TensorBoard. Might do for all loggers. # It might be related to xla tensors blocked when moving the cpu kill loggers. if self.logger is not None: self.logger.finalize("success") # summarize profile results self.profiler.describe() def call_hook( self, hook_name: str, *args: Any, pl_module: Optional["pl.LightningModule"] = None, **kwargs: Any ) -> Any: pl_module = self.lightning_module or pl_module if pl_module: prev_fx_name = pl_module._current_fx_name pl_module._current_fx_name = hook_name # always profile hooks with self.profiler.profile(hook_name): # first call trainer hook callback_fx = getattr(self, hook_name, None) if callable(callback_fx): callback_fx(*args, **kwargs) # next call hook in lightningModule output = None model_fx = getattr(pl_module, hook_name, None) if callable(model_fx): output = model_fx(*args, **kwargs) # *Bad code alert* # The `Accelerator` mostly calls the `TrainingTypePlugin` but some of those calls are deprecated. # The following logic selectively chooses which hooks are called on each object. # In the case of `setup` and `teardown`, the hooks on the `LightningModule` should not call the hooks of the # same name in these objects as they are meant to be managed outside of the `LightningModule` lifecycle. # All of this should be fixed by #8506 # call the accelerator hook if hook_name in ("on_train_start",) and hasattr(self.accelerator, hook_name): accelerator_hook = getattr(self.accelerator, hook_name) accelerator_output = accelerator_hook(*args, **kwargs) # Rely on the accelerator output if lightningModule hook returns nothing # Required for cases such as DataParallel where we reduce the output for the user # todo: move this data parallel logic into the data parallel plugin output = accelerator_output if output is None else output # call the ttp hook if hook_name not in ("setup", "teardown", "on_train_start") and hasattr( self.training_type_plugin, hook_name ): ttp_hook = getattr(self.training_type_plugin, hook_name) ttp_output = ttp_hook(*args, **kwargs) output = ttp_output if output is None else output if pl_module: # restore current_fx when nested context pl_module._current_fx_name = prev_fx_name return output @staticmethod def _parse_devices( gpus: Optional[Union[List[int], str, int]], auto_select_gpus: bool, tpu_cores: Optional[Union[List[int], str, int]], ) -> Tuple[Optional[List[int]], Optional[Union[List[int], int]]]: if auto_select_gpus and isinstance(gpus, int): gpus = pick_multiple_gpus(gpus) # TODO (@seannaren, @kaushikb11): Include IPU parsing logic here gpu_ids = device_parser.parse_gpu_ids(gpus) tpu_cores = device_parser.parse_tpu_cores(tpu_cores) return gpu_ids, tpu_cores @staticmethod def _log_api_event(event: str) -> None: torch._C._log_api_usage_once("lightning.trainer." + event) def __init_profiler(self, profiler: Optional[Union[BaseProfiler, str]]) -> None: if isinstance(profiler, str): PROFILERS = { "simple": SimpleProfiler, "advanced": AdvancedProfiler, "pytorch": PyTorchProfiler, "xla": XLAProfiler, } profiler = profiler.lower() if profiler not in PROFILERS: raise MisconfigurationException( "When passing string value for the `profiler` parameter of `Trainer`," f" it can only be one of {list(PROFILERS.keys())}" ) profiler_class = PROFILERS[profiler] profiler = profiler_class() self.profiler: BaseProfiler = profiler or PassThroughProfiler() def __setup_profiler(self) -> None: local_rank = self.local_rank if self.world_size > 1 else None self.profiler._lightning_module = proxy(self.lightning_module) self.profiler.setup(stage=self.state.fn._setup_fn, local_rank=local_rank, log_dir=self.log_dir) def _log_device_info(self) -> None: rank_zero_info(f"GPU available: {torch.cuda.is_available()}, used: {self._device_type == DeviceType.GPU}") num_tpu_cores = self.tpu_cores if self.tpu_cores is not None and self._device_type == DeviceType.TPU else 0 rank_zero_info(f"TPU available: {_TPU_AVAILABLE}, using: {num_tpu_cores} TPU cores") num_ipus = self.ipus if self.ipus is not None else 0 rank_zero_info(f"IPU available: {_IPU_AVAILABLE}, using: {num_ipus} IPUs") if torch.cuda.is_available() and self._device_type != DeviceType.GPU: rank_zero_warn( "GPU available but not used. Set the gpus flag in your trainer `Trainer(gpus=1)` or script `--gpus=1`." ) if _TPU_AVAILABLE and self._device_type != DeviceType.TPU: rank_zero_warn( "TPU available but not used. Set the `tpu_cores` flag in your trainer" " `Trainer(tpu_cores=8)` or script `--tpu_cores=8`." ) if _IPU_AVAILABLE and self._device_type != DeviceType.IPU and not isinstance(self.accelerator, IPUAccelerator): rank_zero_warn( "IPU available but not used. Set the `ipus` flag in your trainer" " `Trainer(ipus=8)` or script `--ipus=8`." ) def _on_exception(self): if not _fault_tolerant_training(): return # save a checkpoint for fault tolerant training. we don't use `log_dir` to minimize the chances of failure. file_path = os.path.join(self.default_root_dir, ".pl_auto_save.ckpt") self.save_checkpoint(file_path) """ Accelerator properties """ @property def accelerator(self) -> Accelerator: return self._accelerator_connector.accelerator @property def training_type_plugin(self) -> TrainingTypePlugin: return self.accelerator.training_type_plugin @property def precision_plugin(self) -> PrecisionPlugin: return self.accelerator.precision_plugin @property def global_rank(self) -> int: return self.training_type_plugin.global_rank @property def local_rank(self) -> int: # some training types define a local rank return getattr(self.training_type_plugin, "local_rank", 0) @property def node_rank(self) -> int: # some training types define a node rank return getattr(self.training_type_plugin, "node_rank", 0) @property def world_size(self) -> int: # some training types define a world size return getattr(self.training_type_plugin, "world_size", 1) @property def should_rank_save_checkpoint(self) -> bool: return self.training_type_plugin.should_rank_save_checkpoint @property def _distrib_type(self) -> DistributedType: return self._accelerator_connector._distrib_type @property def _device_type(self) -> DeviceType: return self._accelerator_connector._device_type @property def num_nodes(self) -> int: return self._accelerator_connector.num_nodes @property def num_processes(self) -> int: return self._accelerator_connector.num_processes @property def root_gpu(self) -> Optional[int]: return self._accelerator_connector.root_gpu @property def tpu_cores(self) -> int: return self._accelerator_connector.tpu_cores @property def ipus(self) -> int: return self._accelerator_connector.num_ipus @property def num_gpus(self) -> int: return self._accelerator_connector.num_gpus @property def devices(self) -> Optional[Union[List[int], str, int]]: return self._accelerator_connector.devices @property def data_parallel_device_ids(self) -> Optional[List[int]]: return self._accelerator_connector.parallel_device_ids @property def lightning_module(self) -> "pl.LightningModule": return self.accelerator.lightning_module @property def optimizers(self) -> List[Optimizer]: return self.accelerator.optimizers @optimizers.setter def optimizers(self, new_optims: Optional[List[Optimizer]]) -> None: # Necessary to rewrap optimizers to lightning # They will be re-created when accessing # the `lightning_optimizers` trainer property self._lightning_optimizers = None self.accelerator.optimizers = new_optims @property def lr_schedulers(self) -> List[LRSchedulerTypeUnion]: return self.accelerator.lr_schedulers @lr_schedulers.setter def lr_schedulers(self, new_schedulers: List[LRSchedulerTypeUnion]) -> None: self.accelerator.lr_schedulers = new_schedulers @property def optimizer_frequencies(self) -> list: return self.accelerator.optimizer_frequencies @optimizer_frequencies.setter def optimizer_frequencies(self, new_freqs: list) -> None: self.accelerator.optimizer_frequencies = new_freqs @property def amp_backend(self) -> Optional[str]: return self.accelerator.amp_backend @property def precision(self) -> Union[str, int]: return self.accelerator.precision @property def scaler(self): return self.accelerator.scaler @property def gpus(self) -> Optional[Union[List[int], str, int]]: return self._accelerator_connector.gpus @property def model(self) -> torch.nn.Module: """The LightningModule, but possibly wrapped into DataParallel or DistributedDataParallel. To access the pure LightningModule, use :meth:`~pytorch_lightning.trainer.trainer.Trainer.lightning_module` instead. """ return self.accelerator.model @model.setter def model(self, model: torch.nn.Module) -> None: """Setter for the model, pass-through to accelerator and plugin where the model reference is stored. Used by the Tuner to reset the state of Trainer and Accelerator. Args: model: The LightningModule, possibly wrapped into DataParallel or DistributedDataParallel, depending on the backend. """ self.accelerator.model = model """ General properties """ @property def log_dir(self) -> Optional[str]: if self.logger is None: dirpath = self.default_root_dir elif isinstance(self.logger, TensorBoardLogger): dirpath = self.logger.log_dir elif isinstance(self.logger, LoggerCollection): dirpath = self.default_root_dir else: dirpath = self.logger.save_dir dirpath = self.training_type_plugin.broadcast(dirpath) return dirpath @property def use_amp(self) -> bool: return self.precision == 16 @property def is_global_zero(self) -> bool: return self.global_rank == 0 @property def slurm_job_id(self) -> Optional[int]: job_id = os.environ.get("SLURM_JOB_ID") if job_id: try: job_id = int(job_id) except ValueError: job_id = None # in interactive mode, don't make logs use the same job id in_slurm_interactive_mode = os.environ.get("SLURM_JOB_NAME") == "bash" if in_slurm_interactive_mode: job_id = None return job_id @property def lightning_optimizers(self) -> List[LightningOptimizer]: if self._lightning_optimizers is None: self.convert_to_lightning_optimizers() return self._lightning_optimizers @property def distributed_sampler_kwargs(self) -> Optional[dict]: if isinstance(self.training_type_plugin, ParallelPlugin): return self.training_type_plugin.distributed_sampler_kwargs @property def data_parallel(self) -> bool: return self._distrib_type in ( DistributedType.DP, DistributedType.DDP, DistributedType.DDP_SPAWN, DistributedType.DDP2, ) @property def progress_bar_callback(self) -> Optional[ProgressBarBase]: return self._progress_bar_callback @property def progress_bar_dict(self) -> dict: """Read-only for progress bar metrics.""" rank_zero_deprecation( "`trainer.progress_bar_dict` is deprecated in v1.5 and will be removed in v1.7." " Use `ProgressBarBase.get_metrics` instead." ) ref_model = self.lightning_module ref_model = cast(pl.LightningModule, ref_model) if self.progress_bar_callback: return self.progress_bar_callback.get_metrics(self, ref_model) return self.progress_bar_metrics @property def _should_reload_dl_epoch(self) -> bool: """Check if dataloader should be reloaded in the current epoch.""" n_epochs = self.reload_dataloaders_every_n_epochs return n_epochs and (not self.current_epoch % n_epochs) @property def disable_validation(self) -> bool: """Check if validation is disabled during training.""" rank_zero_deprecation( "`trainer.disable_validation` is deprecated in v1.4 and will be removed in v1.6." " Use `not trainer.enable_validation` instead." ) return not self.enable_validation @property def enable_validation(self) -> bool: """Check if we should run validation during training.""" model_ref = self.lightning_module val_loop_enabled = is_overridden("validation_step", model_ref) and self.limit_val_batches > 0 return val_loop_enabled @property def default_root_dir(self) -> str: """The default location to save artifacts of loggers, checkpoints etc. It is used as a fallback if logger or checkpoint callback do not define specific save paths. """ if get_filesystem(self._default_root_dir).protocol == "file": return os.path.normpath(self._default_root_dir) return self._default_root_dir @property def weights_save_path(self) -> str: """ The default root location to save weights (checkpoints), e.g., when the :class:`~pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint` does not define a file path. """ if get_filesystem(self._weights_save_path).protocol == "file": return os.path.normpath(self._weights_save_path) return self._weights_save_path @property def early_stopping_callback(self) -> Optional[EarlyStopping]: """The first :class:`~pytorch_lightning.callbacks.early_stopping.EarlyStopping` callback in the Trainer.callbacks list, or ``None`` if it doesn't exist.""" callbacks = self.early_stopping_callbacks return callbacks[0] if len(callbacks) > 0 else None @property def early_stopping_callbacks(self) -> List[EarlyStopping]: """A list of all instances of :class:`~pytorch_lightning.callbacks.early_stopping.EarlyStopping` found in the Trainer.callbacks list.""" return [c for c in self.callbacks if isinstance(c, EarlyStopping)] @property def prediction_writer_callbacks(self) -> List[BasePredictionWriter]: """A list of all instances of :class:`~pytorch_lightning.callbacks.prediction_writer.BasePredictionWriter` found in the Trainer.callbacks list.""" return [cb for cb in self.callbacks if isinstance(cb, BasePredictionWriter)] @property def checkpoint_callback(self) -> Optional[ModelCheckpoint]: """The first :class:`~pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint` callback in the Trainer.callbacks list, or ``None`` if it doesn't exist.""" callbacks = self.checkpoint_callbacks return callbacks[0] if len(callbacks) > 0 else None @property def checkpoint_callbacks(self) -> List[ModelCheckpoint]: """A list of all instances of :class:`~pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint` found in the Trainer.callbacks list.""" return [c for c in self.callbacks if isinstance(c, ModelCheckpoint)] @property def resume_from_checkpoint(self) -> Optional[Union[str, Path]]: resume_from_checkpoint = self.checkpoint_connector.resume_from_checkpoint_fit_path if resume_from_checkpoint is not None: rank_zero_deprecation( "`trainer.resume_from_checkpoint` is deprecated in v1.5 and will be removed in v1.7." " Specify the fit checkpoint path with `trainer.fit(ckpt_path=)` instead." ) return resume_from_checkpoint def save_checkpoint(self, filepath: _PATH, weights_only: bool = False) -> None: self.checkpoint_connector.save_checkpoint(filepath, weights_only) """ Parsing properties """ @classmethod def default_attributes(cls) -> dict: init_signature = inspect.signature(cls) return {k: v.default for k, v in init_signature.parameters.items()}
[docs] @classmethod def get_deprecated_arg_names(cls) -> List: """Returns a list with deprecated Trainer arguments.""" depr_arg_names = [] for name, val in cls.__dict__.items(): if name.startswith("DEPRECATED") and isinstance(val, (tuple, list)): depr_arg_names.extend(val) return depr_arg_names
@classmethod def from_argparse_args(cls: Any, args: Union[Namespace, ArgumentParser], **kwargs) -> Any: return from_argparse_args(cls, args, **kwargs) @classmethod def parse_argparser(cls, arg_parser: Union[ArgumentParser, Namespace]) -> Namespace: return parse_argparser(cls, arg_parser) @classmethod def match_env_arguments(cls) -> Namespace: return parse_env_variables(cls) @classmethod def add_argparse_args(cls, parent_parser: ArgumentParser, **kwargs) -> ArgumentParser: return add_argparse_args(cls, parent_parser, **kwargs) """ State properties """ @property def interrupted(self) -> bool: return self.state.status == TrainerStatus.INTERRUPTED @property def training(self) -> bool: return self.state.stage == RunningStage.TRAINING @training.setter def training(self, val: bool) -> None: if val: self.state.stage = RunningStage.TRAINING elif self.training: self.state.stage = None @property def testing(self) -> bool: return self.state.stage == RunningStage.TESTING @testing.setter def testing(self, val: bool) -> None: if val: self.state.stage = RunningStage.TESTING elif self.testing: self.state.stage = None @property def predicting(self) -> bool: return self.state.stage == RunningStage.PREDICTING @predicting.setter def predicting(self, val: bool) -> None: if val: self.state.stage = RunningStage.PREDICTING elif self.predicting: self.state.stage = None @property def tuning(self) -> bool: return self.state.stage == RunningStage.TUNING @tuning.setter def tuning(self, val: bool) -> None: if val: self.state.stage = RunningStage.TUNING elif self.tuning: self.state.stage = None @property def validating(self) -> bool: return self.state.stage == RunningStage.VALIDATING @validating.setter def validating(self, val: bool) -> None: if val: self.state.stage = RunningStage.VALIDATING elif self.validating: self.state.stage = None @property def evaluating(self) -> bool: return self.state.stage and self.state.stage.evaluating @property def sanity_checking(self) -> bool: return self.state.stage == RunningStage.SANITY_CHECKING @sanity_checking.setter def sanity_checking(self, val: bool) -> None: if val: self.state.stage = RunningStage.SANITY_CHECKING elif self.sanity_checking: self.state.stage = None """ Loop properties """ @property def global_step(self) -> int: return self.fit_loop.global_step @property def current_epoch(self) -> int: return self.fit_loop.current_epoch @property def max_epochs(self) -> int: return self.fit_loop.max_epochs @property def min_epochs(self) -> Optional[int]: return self.fit_loop.min_epochs @property def max_steps(self) -> int: return self.fit_loop.max_steps @property def min_steps(self) -> Optional[int]: return self.fit_loop.min_steps @property def is_last_batch(self) -> bool: return self.fit_loop.epoch_loop.batch_progress.is_last_batch @property def fit_loop(self) -> FitLoop: return self._fit_loop @fit_loop.setter def fit_loop(self, loop: FitLoop): """Attach a custom fit loop to this Trainer. It will run with :meth:`~pytorch_lighting.trainer.trainer.Trainer.fit`. """ loop.trainer = self self._fit_loop = loop @property def validate_loop(self) -> EvaluationLoop: return self._validate_loop @validate_loop.setter def validate_loop(self, loop: EvaluationLoop): """Attach a custom validation loop to this Trainer. It will run with :meth:`~pytorch_lighting.trainer.trainer.Trainer.validate`. Note that this loop is different from the one running during training inside the :meth:`pytorch_lightning.trainer.trainer.Trainer.fit` call. """ loop.trainer = self self._validate_loop = loop @property def test_loop(self) -> EvaluationLoop: return self._test_loop @test_loop.setter def test_loop(self, loop: EvaluationLoop): """Attach a custom test loop to this Trainer. It will run with :meth:`~pytorch_lightning.trainer.trainer.Trainer.test`. """ loop.trainer = self self._test_loop = loop @property def predict_loop(self) -> PredictionLoop: return self._predict_loop @predict_loop.setter def predict_loop(self, loop: PredictionLoop): """Attach a custom prediction loop to this Trainer. It will run with :meth:`~pytorch_lightning.trainer.trainer.Trainer.predict`. """ loop.trainer = self self._predict_loop = loop @property def _evaluation_loop(self) -> EvaluationLoop: if self.state.fn in (TrainerFn.FITTING, TrainerFn.TUNING): return self.fit_loop.epoch_loop.val_loop if self.state.fn == TrainerFn.VALIDATING: return self.validate_loop if self.state.fn == TrainerFn.TESTING: return self.test_loop raise RuntimeError("The `Trainer._evaluation_loop` property isn't defined. Accessed outside of scope") @property def _active_loop(self) -> Optional[Union[FitLoop, EvaluationLoop, PredictionLoop]]: if self.training: return self.fit_loop if self.sanity_checking or self.evaluating: return self._evaluation_loop if self.predicting: return self.predict_loop """ Logging properties """ @property def callback_metrics(self) -> dict: return self.logger_connector.callback_metrics @property def logged_metrics(self) -> dict: return self.logger_connector.logged_metrics @property def progress_bar_metrics(self) -> dict: return self.logger_connector.progress_bar_metrics @property def _results(self) -> Optional[ResultCollection]: active_loop = self._active_loop if active_loop is not None: return active_loop._results def _exit_gracefully_on_signal(self) -> None: if _fault_tolerant_training() and self._terminate_gracefully: caller = inspect.stack()[1] class_name = caller[0].f_locals["self"].__class__.__name__ raise ExitGracefullyException(f"Exiting gracefully on {class_name}:{caller.function}") @property def weights_summary(self) -> Optional[str]: rank_zero_deprecation("`Trainer.weights_summary` is deprecated in v1.5 and will be removed in v1.7.") return self._weights_summary @weights_summary.setter def weights_summary(self, val: Optional[str]) -> None: rank_zero_deprecation("Setting `Trainer.weights_summary` is deprecated in v1.5 and will be removed in v1.7.") self._weights_summary = val """ Other """ # TODO: refactor this so that it can be done in LightningOptimizer def __getstate__(self): # remove lightning_optimizers self._lightning_optimizers = None return self.__dict__ def __setstate__(self, state): self.__dict__ = state @property def train_loop(self) -> FitLoop: rank_zero_deprecation( "`Trainer.train_loop` has been renamed to `Trainer.fit_loop` and will be removed in v1.6." ) return self.fit_loop @property def terminate_on_nan(self) -> bool: rank_zero_deprecation("`Trainer.terminate_on_nan` is deprecated in v1.5 and will be removed in 1.7.") return self._terminate_on_nan @terminate_on_nan.setter def terminate_on_nan(self, val: bool) -> None: rank_zero_deprecation( f"Setting `Trainer.terminate_on_nan = {val}` is deprecated in v1.5 and will be removed in 1.7." f" Please set `Trainer(detect_anomaly={val})` instead." ) self._terminate_on_nan = val # : 212
def _determine_batch_limits(batches: Union[int, float], name: str) -> Union[int, float]: if 0 <= batches <= 1: return batches if batches > 1 and batches % 1.0 == 0: return int(batches) raise MisconfigurationException( f"You have passed invalid value {batches} for {name}, it has to be in [0.0, 1.0] or an int." )

© Copyright Copyright (c) 2018-2023, William Falcon et al...

Built with Sphinx using a theme provided by Read the Docs.