# Copyright The PyTorch Lightning team.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License."""Profiler to check if there are any bottlenecks in your code."""importloggingimportosimporttimefromcollectionsimportdefaultdictfrompathlibimportPathfromtypingimportDict,Optional,Tuple,Unionimportnumpyasnpfrompytorch_lightning.profiler.baseimportBaseProfilerlog=logging.getLogger(__name__)
[docs]classSimpleProfiler(BaseProfiler):"""This profiler simply records the duration of actions (in seconds) and reports the mean duration of each action and the total time spent over the entire training run."""def__init__(self,dirpath:Optional[Union[str,Path]]=None,filename:Optional[str]=None,extended:bool=True,)->None:""" Args: dirpath: Directory path for the ``filename``. If ``dirpath`` is ``None`` but ``filename`` is present, the ``trainer.log_dir`` (from :class:`~pytorch_lightning.loggers.tensorboard.TensorBoardLogger`) will be used. filename: If present, filename where the profiler results will be saved instead of printing to stdout. The ``.txt`` extension will be used automatically. Raises: ValueError: If you attempt to start an action which has already started, or if you attempt to stop recording an action which was never started. """super().__init__(dirpath=dirpath,filename=filename)self.current_actions:Dict[str,float]={}self.recorded_durations=defaultdict(list)self.extended=extendedself.start_time=time.monotonic()
[docs]defstart(self,action_name:str)->None:ifaction_nameinself.current_actions:raiseValueError(f"Attempted to start {action_name} which has already started.")self.current_actions[action_name]=time.monotonic()
[docs]defstop(self,action_name:str)->None:end_time=time.monotonic()ifaction_namenotinself.current_actions:raiseValueError(f"Attempting to stop recording an action ({action_name}) which was never started.")start_time=self.current_actions.pop(action_name)duration=end_time-start_timeself.recorded_durations[action_name].append(duration)
[docs]defsummary(self)->str:sep=os.linesepoutput_string=""ifself._stageisnotNone:output_string+=f"{self._stage.upper()} "output_string+=f"Profiler Report{sep}"ifself.extended:iflen(self.recorded_durations)>0:max_key=max(len(k)forkinself.recorded_durations.keys())deflog_row(action,mean,num_calls,total,per):row=f"{sep}{action:<{max_key}s}\t| {mean:<15}\t|"row+=f"{num_calls:<15}\t| {total:<15}\t| {per:<15}\t|"returnrowoutput_string+=log_row("Action","Mean duration (s)","Num calls","Total time (s)","Percentage %")output_string_len=len(output_string)output_string+=f"{sep}{'-'*output_string_len}"report,total_duration=self._make_report()output_string+=log_row("Total","-","_",f"{total_duration:.5}","100 %")output_string+=f"{sep}{'-'*output_string_len}"foraction,durations,duration_perinreport:output_string+=log_row(action,f"{np.mean(durations):.5}",f"{len(durations):}",f"{np.sum(durations):.5}",f"{duration_per:.5}",)else:deflog_row(action,mean,total):returnf"{sep}{action:<20s}\t| {mean:<15}\t| {total:<15}"output_string+=log_row("Action","Mean duration (s)","Total time (s)")output_string+=f"{sep}{'-'*65}"foraction,durationsinself.recorded_durations.items():output_string+=log_row(action,f"{np.mean(durations):.5}",f"{np.sum(durations):.5}")output_string+=sepreturnoutput_string
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. Read PyTorch Lightning's Privacy Policy.