Shortcuts

Source code for pytorch_lightning.loops.epoch.evaluation_epoch_loop

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import OrderedDict
from dataclasses import asdict
from functools import lru_cache
from typing import Any, Dict, Iterator, Optional, Union

from deprecate import void

from pytorch_lightning.loops.base import Loop
from pytorch_lightning.loops.utilities import _update_dataloader_iter
from pytorch_lightning.trainer.progress import BatchProgress
from pytorch_lightning.utilities.auto_restart import MergedIteratorState, reload_dataloader_state_dict
from pytorch_lightning.utilities.fetching import AbstractDataFetcher, DataFetcher
from pytorch_lightning.utilities.memory import recursive_detach
from pytorch_lightning.utilities.model_helpers import is_overridden
from pytorch_lightning.utilities.types import EPOCH_OUTPUT, STEP_OUTPUT


[docs]class EvaluationEpochLoop(Loop): """This is the loop performing the evaluation. It mainly loops over the given dataloader and runs the validation or test step (depending on the trainer's current state). """ def __init__(self) -> None: super().__init__() self.outputs: EPOCH_OUTPUT = [] self.batch_progress = BatchProgress() self._dl_max_batches: Optional[int] = None self._num_dataloaders: Optional[int] = None self._dataloader_iter: Optional[Iterator] = None self._data_fetcher: Optional[DataFetcher] = None self._dataloader_state_dict: Dict[str, Any] = None @property def done(self) -> bool: """Returns ``True`` if the current iteration count reaches the number of dataloader batches.""" return self.batch_progress.current.completed >= self._dl_max_batches
[docs] def connect(self, **kwargs: "Loop") -> None: raise NotImplementedError(f"{self.__class__.__name__} does not connect any child loops.")
[docs] def reset(self) -> None: """Resets the loop's internal state.""" self._dl_max_batches = None self._num_dataloaders = None self._data_fetcher = None self.outputs = [] if not self.restarting: self.batch_progress.reset_on_run() else: self.batch_progress.reset_on_restart()
[docs] def on_run_start( self, data_fetcher: AbstractDataFetcher, dataloader_idx: int, dl_max_batches: int, num_dataloaders: int ) -> None: """Adds the passed arguments to the loop's state if necessary. Args: data_fetcher: the current data_fetcher wrapping the dataloader dataloader_idx: index of the current dataloader dl_max_batches: maximum number of batches the dataloader can produce num_dataloaders: the total number of dataloaders """ void(dataloader_idx) self._dl_max_batches = dl_max_batches self._num_dataloaders = num_dataloaders self._data_fetcher = data_fetcher self._reload_dataloader_state_dict(data_fetcher) self._dataloader_iter = _update_dataloader_iter(data_fetcher, self.batch_progress.current.ready)
[docs] def advance( self, data_fetcher: AbstractDataFetcher, dataloader_idx: int, dl_max_batches: int, num_dataloaders: int ) -> None: """Calls the evaluation step with the corresponding hooks and updates the logger connector. Args: data_fetcher: iterator over the dataloader dataloader_idx: index of the current dataloader dl_max_batches: maximum number of batches the dataloader can produce num_dataloaders: the total number of dataloaders Raises: StopIteration: If the current batch is None """ void(data_fetcher, dl_max_batches, num_dataloaders) batch_idx, (batch, self.batch_progress.is_last_batch) = next(self._dataloader_iter) if batch is None: raise StopIteration if not self.trainer._data_connector.evaluation_data_fetcher.store_on_device: with self.trainer.profiler.profile("evaluation_batch_to_device"): batch = self.trainer.accelerator.batch_to_device(batch, dataloader_idx=dataloader_idx) self.batch_progress.increment_ready() # hook self._on_evaluation_batch_start(batch, batch_idx, dataloader_idx) self.batch_progress.increment_started() # lightning module methods with self.trainer.profiler.profile("evaluation_step_and_end"): output = self._evaluation_step(batch, batch_idx, dataloader_idx) output = self._evaluation_step_end(output) self.batch_progress.increment_processed() # track loss history self._on_evaluation_batch_end(output, batch, batch_idx, dataloader_idx) self.batch_progress.increment_completed() # log batch metrics self.trainer.logger_connector.update_eval_step_metrics() # track epoch level outputs if self._should_track_batch_outputs_for_epoch_end(): output = recursive_detach(output, to_cpu=self.trainer.move_metrics_to_cpu) if output is not None: self.outputs.append(output) if not self.batch_progress.is_last_batch: # if fault tolerant is enabled and process has been notified, exit. self.trainer._exit_gracefully_on_signal()
[docs] def on_run_end(self) -> EPOCH_OUTPUT: """Returns the outputs of the whole run.""" outputs = self.outputs # free memory self.outputs = [] self._dataloader_iter = None self._data_fetcher = None return outputs
[docs] def teardown(self) -> None: # in case the model changes self._should_track_batch_outputs_for_epoch_end.cache_clear()
[docs] def on_save_checkpoint(self) -> Dict: state_dict = super().on_save_checkpoint() if ( self._data_fetcher is None or self._num_completed_batches_reached() # did not finish # TODO: fault-tolerance requires a minimum number of batches so probably should be > 0 or self.batch_progress.current.ready == 0 # did not start ): return state_dict # TODO: this should use `pytorch_lightning/trainer/supporters.py::CombinedLoader._state_dict_fn` state_to_save = "state" if self._has_completed() else "previous_state" state: Optional[MergedIteratorState] = getattr(self._data_fetcher.dataloader_iter, state_to_save, None) if state: state_dict["dataloader_state_dict"] = asdict(state) return state_dict
[docs] def on_load_checkpoint(self, state_dict: Dict) -> None: # cache the dataloader state dict until the dataloader objects are available self._dataloader_state_dict = state_dict.get("dataloader_state_dict")
def _reload_dataloader_state_dict(self, data_fetcher: AbstractDataFetcher): if not self.trainer.sanity_checking and self._dataloader_state_dict: reload_dataloader_state_dict(data_fetcher.dataloader, self._dataloader_state_dict) self._dataloader_state_dict = None def _num_completed_batches_reached(self) -> bool: epoch_finished_on_completed = self.batch_progress.current.completed == self._dl_max_batches dataloader_consumed_successfully = self.batch_progress.is_last_batch and self._has_completed() return epoch_finished_on_completed or dataloader_consumed_successfully def _has_completed(self) -> bool: return self.batch_progress.current.ready == self.batch_progress.current.completed def _evaluation_step(self, batch: Any, batch_idx: int, dataloader_idx: int) -> Optional[STEP_OUTPUT]: """The evaluation step (validation_step or test_step depending on the trainer's state). Args: batch: The current batch to run through the step. batch_idx: The index of the current batch dataloader_idx: the index of the dataloader producing the current batch Returns: the outputs of the step """ # configure step_kwargs step_kwargs = self._build_kwargs(batch, batch_idx, dataloader_idx) if self.trainer.testing: self.trainer.lightning_module._current_fx_name = "test_step" with self.trainer.profiler.profile("test_step"): output = self.trainer.accelerator.test_step(step_kwargs) else: self.trainer.lightning_module._current_fx_name = "validation_step" with self.trainer.profiler.profile("validation_step"): output = self.trainer.accelerator.validation_step(step_kwargs) return output def _evaluation_step_end(self, *args: Any, **kwargs: Any) -> Optional[STEP_OUTPUT]: """Calls the `{validation/test}_step_end` hook.""" hook_name = "test_step_end" if self.trainer.testing else "validation_step_end" output = self.trainer.call_hook(hook_name, *args, **kwargs) return output def _on_evaluation_batch_start(self, batch: Any, batch_idx: int, dataloader_idx: int) -> None: """Calls the ``on_{validation/test}_batch_start`` hook. Args: batch: The current batch to run through the step batch_idx: The index of the current batch dataloader_idx: The index of the dataloader producing the current batch Raises: AssertionError: If the number of dataloaders is None (has not yet been set). """ self.trainer.logger_connector.on_batch_start(batch_idx, batch) assert self._num_dataloaders is not None self.trainer.logger_connector.on_evaluation_batch_start(dataloader_idx, self._num_dataloaders) if self.trainer.testing: self.trainer.call_hook("on_test_batch_start", batch, batch_idx, dataloader_idx) else: self.trainer.call_hook("on_validation_batch_start", batch, batch_idx, dataloader_idx) def _on_evaluation_batch_end( self, output: Optional[STEP_OUTPUT], batch: Any, batch_idx: int, dataloader_idx: int ) -> None: """The ``on_{validation/test}_batch_end`` hook. Args: output: The output of the performed step batch: The input batch for the step batch_idx: The index of the current batch dataloader_idx: Index of the dataloader producing the current batch """ hook_name = "on_test_batch_end" if self.trainer.testing else "on_validation_batch_end" self.trainer.call_hook(hook_name, output, batch, batch_idx, dataloader_idx) self.trainer.logger_connector.on_batch_end() def _build_kwargs(self, batch: Any, batch_idx: int, dataloader_idx: int) -> Dict[str, Union[Any, int]]: """Helper function to build the arguments for the current step. Args: batch: The current batch to run through the step batch_idx: the index of the current batch dataloader_idx: the index of the dataloader producing the current batch Returns: the keyword arguments to pass to the step function """ # make dataloader_idx arg in validation_step optional step_kwargs = OrderedDict([("batch", batch), ("batch_idx", batch_idx)]) multiple_val_loaders = not self.trainer.testing and self._num_dataloaders > 1 multiple_test_loaders = self.trainer.testing and self._num_dataloaders > 1 if multiple_test_loaders or multiple_val_loaders: step_kwargs["dataloader_idx"] = dataloader_idx return step_kwargs @lru_cache(1) def _should_track_batch_outputs_for_epoch_end(self) -> bool: """Whether the batch outputs should be stored for later usage.""" model = self.trainer.lightning_module if self.trainer.testing: return is_overridden("test_epoch_end", model) return is_overridden("validation_epoch_end", model)

© Copyright Copyright (c) 2018-2023, William Falcon et al...

Built with Sphinx using a theme provided by Read the Docs.