Source code for pytorch_lightning.loops.epoch.evaluation_epoch_loop
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import OrderedDict
from dataclasses import asdict
from functools import lru_cache
from typing import Any, Dict, Iterator, Optional, Union
from deprecate import void
from pytorch_lightning.loops.base import Loop
from pytorch_lightning.loops.utilities import _update_dataloader_iter
from pytorch_lightning.trainer.progress import BatchProgress
from pytorch_lightning.utilities.auto_restart import MergedIteratorState, reload_dataloader_state_dict
from pytorch_lightning.utilities.fetching import AbstractDataFetcher, DataFetcher
from pytorch_lightning.utilities.memory import recursive_detach
from pytorch_lightning.utilities.model_helpers import is_overridden
from pytorch_lightning.utilities.types import EPOCH_OUTPUT, STEP_OUTPUT
[docs]class EvaluationEpochLoop(Loop):
"""This is the loop performing the evaluation.
It mainly loops over the given dataloader and runs the validation or test step (depending on the trainer's current
state).
"""
def __init__(self) -> None:
super().__init__()
self.outputs: EPOCH_OUTPUT = []
self.batch_progress = BatchProgress()
self._dl_max_batches: Optional[int] = None
self._num_dataloaders: Optional[int] = None
self._dataloader_iter: Optional[Iterator] = None
self._data_fetcher: Optional[DataFetcher] = None
self._dataloader_state_dict: Dict[str, Any] = None
@property
def done(self) -> bool:
"""Returns ``True`` if the current iteration count reaches the number of dataloader batches."""
return self.batch_progress.current.completed >= self._dl_max_batches
[docs] def connect(self, **kwargs: "Loop") -> None:
raise NotImplementedError(f"{self.__class__.__name__} does not connect any child loops.")
[docs] def reset(self) -> None:
"""Resets the loop's internal state."""
self._dl_max_batches = None
self._num_dataloaders = None
self._data_fetcher = None
self.outputs = []
if not self.restarting:
self.batch_progress.reset_on_run()
else:
self.batch_progress.reset_on_restart()
[docs] def on_run_start(
self, data_fetcher: AbstractDataFetcher, dataloader_idx: int, dl_max_batches: int, num_dataloaders: int
) -> None:
"""Adds the passed arguments to the loop's state if necessary.
Args:
data_fetcher: the current data_fetcher wrapping the dataloader
dataloader_idx: index of the current dataloader
dl_max_batches: maximum number of batches the dataloader can produce
num_dataloaders: the total number of dataloaders
"""
void(dataloader_idx)
self._dl_max_batches = dl_max_batches
self._num_dataloaders = num_dataloaders
self._data_fetcher = data_fetcher
self._reload_dataloader_state_dict(data_fetcher)
self._dataloader_iter = _update_dataloader_iter(data_fetcher, self.batch_progress.current.ready)
[docs] def advance(
self, data_fetcher: AbstractDataFetcher, dataloader_idx: int, dl_max_batches: int, num_dataloaders: int
) -> None:
"""Calls the evaluation step with the corresponding hooks and updates the logger connector.
Args:
data_fetcher: iterator over the dataloader
dataloader_idx: index of the current dataloader
dl_max_batches: maximum number of batches the dataloader can produce
num_dataloaders: the total number of dataloaders
Raises:
StopIteration: If the current batch is None
"""
void(data_fetcher, dl_max_batches, num_dataloaders)
batch_idx, (batch, self.batch_progress.is_last_batch) = next(self._dataloader_iter)
if batch is None:
raise StopIteration
if not self.trainer._data_connector.evaluation_data_fetcher.store_on_device:
with self.trainer.profiler.profile("evaluation_batch_to_device"):
batch = self.trainer.accelerator.batch_to_device(batch, dataloader_idx=dataloader_idx)
self.batch_progress.increment_ready()
# hook
self._on_evaluation_batch_start(batch, batch_idx, dataloader_idx)
self.batch_progress.increment_started()
# lightning module methods
with self.trainer.profiler.profile("evaluation_step_and_end"):
output = self._evaluation_step(batch, batch_idx, dataloader_idx)
output = self._evaluation_step_end(output)
self.batch_progress.increment_processed()
# track loss history
self._on_evaluation_batch_end(output, batch, batch_idx, dataloader_idx)
self.batch_progress.increment_completed()
# log batch metrics
self.trainer.logger_connector.update_eval_step_metrics()
# track epoch level outputs
if self._should_track_batch_outputs_for_epoch_end():
output = recursive_detach(output, to_cpu=self.trainer.move_metrics_to_cpu)
if output is not None:
self.outputs.append(output)
if not self.batch_progress.is_last_batch:
# if fault tolerant is enabled and process has been notified, exit.
self.trainer._exit_gracefully_on_signal()
[docs] def on_run_end(self) -> EPOCH_OUTPUT:
"""Returns the outputs of the whole run."""
outputs = self.outputs
# free memory
self.outputs = []
self._dataloader_iter = None
self._data_fetcher = None
return outputs
[docs] def teardown(self) -> None:
# in case the model changes
self._should_track_batch_outputs_for_epoch_end.cache_clear()
[docs] def on_save_checkpoint(self) -> Dict:
state_dict = super().on_save_checkpoint()
if (
self._data_fetcher is None
or self._num_completed_batches_reached() # did not finish
# TODO: fault-tolerance requires a minimum number of batches so probably should be > 0
or self.batch_progress.current.ready == 0 # did not start
):
return state_dict
# TODO: this should use `pytorch_lightning/trainer/supporters.py::CombinedLoader._state_dict_fn`
state_to_save = "state" if self._has_completed() else "previous_state"
state: Optional[MergedIteratorState] = getattr(self._data_fetcher.dataloader_iter, state_to_save, None)
if state:
state_dict["dataloader_state_dict"] = asdict(state)
return state_dict
[docs] def on_load_checkpoint(self, state_dict: Dict) -> None:
# cache the dataloader state dict until the dataloader objects are available
self._dataloader_state_dict = state_dict.get("dataloader_state_dict")
def _reload_dataloader_state_dict(self, data_fetcher: AbstractDataFetcher):
if not self.trainer.sanity_checking and self._dataloader_state_dict:
reload_dataloader_state_dict(data_fetcher.dataloader, self._dataloader_state_dict)
self._dataloader_state_dict = None
def _num_completed_batches_reached(self) -> bool:
epoch_finished_on_completed = self.batch_progress.current.completed == self._dl_max_batches
dataloader_consumed_successfully = self.batch_progress.is_last_batch and self._has_completed()
return epoch_finished_on_completed or dataloader_consumed_successfully
def _has_completed(self) -> bool:
return self.batch_progress.current.ready == self.batch_progress.current.completed
def _evaluation_step(self, batch: Any, batch_idx: int, dataloader_idx: int) -> Optional[STEP_OUTPUT]:
"""The evaluation step (validation_step or test_step depending on the trainer's state).
Args:
batch: The current batch to run through the step.
batch_idx: The index of the current batch
dataloader_idx: the index of the dataloader producing the current batch
Returns:
the outputs of the step
"""
# configure step_kwargs
step_kwargs = self._build_kwargs(batch, batch_idx, dataloader_idx)
if self.trainer.testing:
self.trainer.lightning_module._current_fx_name = "test_step"
with self.trainer.profiler.profile("test_step"):
output = self.trainer.accelerator.test_step(step_kwargs)
else:
self.trainer.lightning_module._current_fx_name = "validation_step"
with self.trainer.profiler.profile("validation_step"):
output = self.trainer.accelerator.validation_step(step_kwargs)
return output
def _evaluation_step_end(self, *args: Any, **kwargs: Any) -> Optional[STEP_OUTPUT]:
"""Calls the `{validation/test}_step_end` hook."""
hook_name = "test_step_end" if self.trainer.testing else "validation_step_end"
output = self.trainer.call_hook(hook_name, *args, **kwargs)
return output
def _on_evaluation_batch_start(self, batch: Any, batch_idx: int, dataloader_idx: int) -> None:
"""Calls the ``on_{validation/test}_batch_start`` hook.
Args:
batch: The current batch to run through the step
batch_idx: The index of the current batch
dataloader_idx: The index of the dataloader producing the current batch
Raises:
AssertionError: If the number of dataloaders is None (has not yet been set).
"""
self.trainer.logger_connector.on_batch_start(batch_idx, batch)
assert self._num_dataloaders is not None
self.trainer.logger_connector.on_evaluation_batch_start(dataloader_idx, self._num_dataloaders)
if self.trainer.testing:
self.trainer.call_hook("on_test_batch_start", batch, batch_idx, dataloader_idx)
else:
self.trainer.call_hook("on_validation_batch_start", batch, batch_idx, dataloader_idx)
def _on_evaluation_batch_end(
self, output: Optional[STEP_OUTPUT], batch: Any, batch_idx: int, dataloader_idx: int
) -> None:
"""The ``on_{validation/test}_batch_end`` hook.
Args:
output: The output of the performed step
batch: The input batch for the step
batch_idx: The index of the current batch
dataloader_idx: Index of the dataloader producing the current batch
"""
hook_name = "on_test_batch_end" if self.trainer.testing else "on_validation_batch_end"
self.trainer.call_hook(hook_name, output, batch, batch_idx, dataloader_idx)
self.trainer.logger_connector.on_batch_end()
def _build_kwargs(self, batch: Any, batch_idx: int, dataloader_idx: int) -> Dict[str, Union[Any, int]]:
"""Helper function to build the arguments for the current step.
Args:
batch: The current batch to run through the step
batch_idx: the index of the current batch
dataloader_idx: the index of the dataloader producing the current batch
Returns:
the keyword arguments to pass to the step function
"""
# make dataloader_idx arg in validation_step optional
step_kwargs = OrderedDict([("batch", batch), ("batch_idx", batch_idx)])
multiple_val_loaders = not self.trainer.testing and self._num_dataloaders > 1
multiple_test_loaders = self.trainer.testing and self._num_dataloaders > 1
if multiple_test_loaders or multiple_val_loaders:
step_kwargs["dataloader_idx"] = dataloader_idx
return step_kwargs
@lru_cache(1)
def _should_track_batch_outputs_for_epoch_end(self) -> bool:
"""Whether the batch outputs should be stored for later usage."""
model = self.trainer.lightning_module
if self.trainer.testing:
return is_overridden("test_epoch_end", model)
return is_overridden("validation_epoch_end", model)