CSVLogger
- class pytorch_lightning.loggers.CSVLogger(save_dir, name='default', version=None, prefix='')[source]
Bases:
pytorch_lightning.loggers.base.LightningLoggerBase
Log to local file system in yaml and CSV format.
Logs are saved to
os.path.join(save_dir, name, version)
.Example
>>> from pytorch_lightning import Trainer >>> from pytorch_lightning.loggers import CSVLogger >>> logger = CSVLogger("logs", name="my_exp_name") >>> trainer = Trainer(logger=logger)
- Parameters
save_dir (
str
) – Save directoryname (
Optional
[str
]) – Experiment name. Defaults to'default'
.version (
Union
[int
,str
,None
]) – Experiment version. If version is not specified the logger inspects the save directory for existing versions, then automatically assigns the next available version.prefix (
str
) – A string to put at the beginning of metric keys.
- finalize(status)[source]
Do any processing that is necessary to finalize an experiment.
- log_hyperparams(params)[source]
Record hyperparameters.
- log_metrics(metrics, step=None)[source]
Records metrics. This method logs metrics as as soon as it received them. If you want to aggregate metrics for one specific step, use the
agg_and_log_metrics()
method.
- property experiment: pytorch_lightning.loggers.csv_logs.ExperimentWriter
Actual ExperimentWriter object. To use ExperimentWriter features in your
LightningModule
do the following.Example:
self.logger.experiment.some_experiment_writer_function()
- property log_dir: str
The log directory for this run. By default, it is named
'version_${self.version}'
but it can be overridden by passing a string value for the constructor’s version parameter instead ofNone
or an int.
- property root_dir: str
Parent directory for all checkpoint subdirectories. If the experiment name parameter is
None
or the empty string, no experiment subdirectory is used and the checkpoint will be saved in “save_dir/version_dir”