PyTorch Lightning CIFAR10 ~94% Baseline Tutorial¶
Author: PL team
License: CC BY-SA
Generated: 2021-07-08T20:31:46.347606
Train a Resnet to 94% accuracy on Cifar10!
Give us a ⭐ on Github | Check out the documentation | Join us on Slack
Setup¶
This notebook requires some packages besides pytorch-lightning.
[1]:
! pip install --quiet "torchmetrics>=0.3" "torch>=1.6, <1.9" "torchvision" "lightning-bolts" "pytorch-lightning>=1.3"
[2]:
# Run this if you intend to use TPUs
# !pip install cloud-tpu-client==0.10 https://storage.googleapis.com/tpu-pytorch/wheels/torch_xla-1.8-cp37-cp37m-linux_x86_64.whl
[3]:
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from pl_bolts.datamodules import CIFAR10DataModule
from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
from pytorch_lightning import LightningModule, seed_everything, Trainer
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.loggers import TensorBoardLogger
from torch.optim.lr_scheduler import OneCycleLR
from torch.optim.swa_utils import AveragedModel, update_bn
from torchmetrics.functional import accuracy
seed_everything(7)
PATH_DATASETS = os.environ.get('PATH_DATASETS', '.')
AVAIL_GPUS = min(1, torch.cuda.device_count())
BATCH_SIZE = 256 if AVAIL_GPUS else 64
NUM_WORKERS = int(os.cpu_count() / 2)
Global seed set to 7
CIFAR10 Data Module¶
Import the existing data module from bolts
and modify the train and test transforms.
[4]:
train_transforms = torchvision.transforms.Compose([
torchvision.transforms.RandomCrop(32, padding=4),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.ToTensor(),
cifar10_normalization(),
])
test_transforms = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
cifar10_normalization(),
])
cifar10_dm = CIFAR10DataModule(
data_dir=PATH_DATASETS,
batch_size=BATCH_SIZE,
num_workers=NUM_WORKERS,
train_transforms=train_transforms,
test_transforms=test_transforms,
val_transforms=test_transforms,
)
Resnet¶
Modify the pre-existing Resnet architecture from TorchVision. The pre-existing architecture is based on ImageNet images (224x224) as input. So we need to modify it for CIFAR10 images (32x32).
[5]:
def create_model():
model = torchvision.models.resnet18(pretrained=False, num_classes=10)
model.conv1 = nn.Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
model.maxpool = nn.Identity()
return model
Lightning Module¶
Check out the `configure_optimizers
<https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.html#configure-optimizers>`__ method to use custom Learning Rate schedulers. The OneCycleLR with SGD will get you to around 92-93% accuracy in 20-30 epochs and 93-94% accuracy in 40-50 epochs. Feel free to experiment with different LR schedules from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
[6]:
class LitResnet(LightningModule):
def __init__(self, lr=0.05):
super().__init__()
self.save_hyperparameters()
self.model = create_model()
def forward(self, x):
out = self.model(x)
return F.log_softmax(out, dim=1)
def training_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = F.nll_loss(logits, y)
self.log('train_loss', loss)
return loss
def evaluate(self, batch, stage=None):
x, y = batch
logits = self(x)
loss = F.nll_loss(logits, y)
preds = torch.argmax(logits, dim=1)
acc = accuracy(preds, y)
if stage:
self.log(f'{stage}_loss', loss, prog_bar=True)
self.log(f'{stage}_acc', acc, prog_bar=True)
def validation_step(self, batch, batch_idx):
self.evaluate(batch, 'val')
def test_step(self, batch, batch_idx):
self.evaluate(batch, 'test')
def configure_optimizers(self):
optimizer = torch.optim.SGD(
self.parameters(),
lr=self.hparams.lr,
momentum=0.9,
weight_decay=5e-4,
)
steps_per_epoch = 45000 // BATCH_SIZE
scheduler_dict = {
'scheduler': OneCycleLR(
optimizer,
0.1,
epochs=self.trainer.max_epochs,
steps_per_epoch=steps_per_epoch,
),
'interval': 'step',
}
return {'optimizer': optimizer, 'lr_scheduler': scheduler_dict}
[7]:
model = LitResnet(lr=0.05)
model.datamodule = cifar10_dm
trainer = Trainer(
progress_bar_refresh_rate=10,
max_epochs=30,
gpus=AVAIL_GPUS,
logger=TensorBoardLogger('lightning_logs/', name='resnet'),
callbacks=[LearningRateMonitor(logging_interval='step')],
)
trainer.fit(model, cifar10_dm)
trainer.test(model, datamodule=cifar10_dm)
GPU available: True, used: True
TPU available: False, using: 0 TPU cores
Files already downloaded and verified
Files already downloaded and verified
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]
| Name | Type | Params
---------------------------------
0 | model | ResNet | 11.2 M
---------------------------------
11.2 M Trainable params
0 Non-trainable params
11.2 M Total params
44.696 Total estimated model params size (MB)
Global seed set to 7
/home/AzDevOps_azpcontainer/.local/lib/python3.8/site-packages/pytorch_lightning/callbacks/model_checkpoint.py:610: LightningDeprecationWarning: Relying on `self.log('val_loss', ...)` to set the ModelCheckpoint monitor is deprecated in v1.2 and will be removed in v1.4. Please, create your own `mc = ModelCheckpoint(monitor='your_monitor')` and use it as `Trainer(callbacks=[mc])`.
warning_cache.deprecation(
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]
--------------------------------------------------------------------------------
DATALOADER:0 TEST RESULTS
{'test_acc': 0.9176999926567078, 'test_loss': 0.2892821431159973}
--------------------------------------------------------------------------------
[7]:
[{'test_loss': 0.2892821431159973, 'test_acc': 0.9176999926567078}]
Bonus: Use Stochastic Weight Averaging to get a boost on performance¶
Use SWA from torch.optim to get a quick performance boost. Also shows a couple of cool features from Lightning: - Use training_epoch_end
to run code after the end of every epoch - Use a pretrained model directly with this wrapper for SWA
[8]:
class SWAResnet(LitResnet):
def __init__(self, trained_model, lr=0.01):
super().__init__()
self.save_hyperparameters('lr')
self.model = trained_model
self.swa_model = AveragedModel(self.model)
def forward(self, x):
out = self.swa_model(x)
return F.log_softmax(out, dim=1)
def training_epoch_end(self, training_step_outputs):
self.swa_model.update_parameters(self.model)
def validation_step(self, batch, batch_idx, stage=None):
x, y = batch
logits = F.log_softmax(self.model(x), dim=1)
loss = F.nll_loss(logits, y)
preds = torch.argmax(logits, dim=1)
acc = accuracy(preds, y)
self.log('val_loss', loss, prog_bar=True)
self.log('val_acc', acc, prog_bar=True)
def configure_optimizers(self):
optimizer = torch.optim.SGD(
self.model.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4
)
return optimizer
def on_train_end(self):
update_bn(self.datamodule.train_dataloader(), self.swa_model, device=self.device)
[9]:
swa_model = SWAResnet(model.model, lr=0.01)
swa_model.datamodule = cifar10_dm
swa_trainer = Trainer(
progress_bar_refresh_rate=20,
max_epochs=20,
gpus=AVAIL_GPUS,
logger=TensorBoardLogger('lightning_logs/', name='swa_resnet'),
)
swa_trainer.fit(swa_model, cifar10_dm)
swa_trainer.test(swa_model, datamodule=cifar10_dm)
GPU available: True, used: True
TPU available: False, using: 0 TPU cores
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]
| Name | Type | Params
--------------------------------------------
0 | model | ResNet | 11.2 M
1 | swa_model | AveragedModel | 11.2 M
--------------------------------------------
22.3 M Trainable params
0 Non-trainable params
22.3 M Total params
89.392 Total estimated model params size (MB)
Global seed set to 7
/home/AzDevOps_azpcontainer/.local/lib/python3.8/site-packages/pytorch_lightning/core/lightning.py:168: LightningDeprecationWarning: The `LightningModule.datamodule` property is deprecated in v1.3 and will be removed in v1.5. Access the datamodule through using `self.trainer.datamodule` instead.
rank_zero_deprecation(
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]
--------------------------------------------------------------------------------
DATALOADER:0 TEST RESULTS
{'test_acc': 0.9178000092506409, 'test_loss': 0.2622945308685303}
--------------------------------------------------------------------------------
[9]:
[{'test_loss': 0.2622945308685303, 'test_acc': 0.9178000092506409}]
[10]:
# Start tensorboard.
%reload_ext tensorboard
%tensorboard --logdir lightning_logs/
Congratulations - Time to Join the Community!¶
Congratulations on completing this notebook tutorial! If you enjoyed this and would like to join the Lightning movement, you can do so in the following ways!
Star Lightning on GitHub¶
The easiest way to help our community is just by starring the GitHub repos! This helps raise awareness of the cool tools we’re building.
Join our Slack!¶
The best way to keep up to date on the latest advancements is to join our community! Make sure to introduce yourself and share your interests in #general
channel
Contributions !¶
The best way to contribute to our community is to become a code contributor! At any time you can go to Lightning or Bolt GitHub Issues page and filter for “good first issue”.
You can also contribute your own notebooks with useful examples !