BaseFinetuning
- class pytorch_lightning.callbacks.BaseFinetuning[source]
Bases:
pytorch_lightning.callbacks.base.Callback
This class implements the base logic for writing your own Finetuning Callback.
Override
freeze_before_training
andfinetune_function
methods with your own logic.freeze_before_training
: This method is called beforeconfigure_optimizers
and should be used to freeze any modules parameters.
finetune_function
: This method is called on every train epoch start and should be used tounfreeze
any parameters. Those parameters needs to be added in a newparam_group
within the optimizer.
Note
Make sure to filter the parameters based on
requires_grad
.Example:
class MyModel(LightningModule) ... def configure_optimizer(self): # Make sure to filter the parameters based on `requires_grad` return Adam(filter(lambda p: p.requires_grad, self.parameters)) class FeatureExtractorFreezeUnfreeze(BaseFinetuning): def __init__(self, unfreeze_at_epoch=10): self._unfreeze_at_epoch = unfreeze_at_epoch def freeze_before_training(self, pl_module): # freeze any module you want # Here, we are freezing `feature_extractor` self.freeze(pl_module.feature_extractor) def finetune_function(self, pl_module, current_epoch, optimizer, optimizer_idx): # When `current_epoch` is 10, feature_extractor will start training. if current_epoch == self._unfreeze_at_epoch: self.unfreeze_and_add_param_group( modules=pl_module.feature_extractor, optimizer=optimizer, train_bn=True, )
- static filter_on_optimizer(optimizer, params)[source]
This function is used to exclude any parameter which already exists in this optimizer
- static filter_params(modules, train_bn=True, requires_grad=True)[source]
Yields the requires_grad parameters of a given module or list of modules.
- Parameters
- Return type
- Returns
Generator
- finetune_function(pl_module, epoch, optimizer, opt_idx)[source]
Override to add your unfreeze logic
- static flatten_modules(modules)[source]
This function is used to flatten a module or an iterable of modules into a list of its leaf modules (modules with no children) and parent modules that have parameters directly themselves.
- static freeze(modules, train_bn=True)[source]
Freezes the parameters of the provided modules
- freeze_before_training(pl_module)[source]
Override to add your freeze logic
- static make_trainable(modules)[source]
Unfreezes the parameters of the provided modules
- on_before_accelerator_backend_setup(trainer, pl_module)[source]
Called before accelerator is being setup
- on_load_checkpoint(trainer, pl_module, callback_state)[source]
Called when loading a model checkpoint, use to reload state.
- Parameters
trainer (
Trainer
) – the currentTrainer
instance.pl_module (
LightningModule
) – the currentLightningModule
instance.callback_state (
Dict
[int
,List
[Dict
[str
,Any
]]]) – the callback state returned byon_save_checkpoint
.
- Return type
Note
The
on_load_checkpoint
won’t be called with an undefined state. If youron_load_checkpoint
hook behavior doesn’t rely on a state, you will still need to overrideon_save_checkpoint
to return adummy state
.
- on_save_checkpoint(trainer, pl_module, checkpoint)[source]
Called when saving a model checkpoint, use to persist state.
- on_train_epoch_start(trainer, pl_module)[source]
Called when the epoch begins.
- static unfreeze_and_add_param_group(modules, optimizer, lr=None, initial_denom_lr=10.0, train_bn=True)[source]
Unfreezes a module and adds its parameters to an optimizer.
- Parameters
modules (
Union
[Module
,Iterable
[Union
[Module
,Iterable
]]]) – A module or iterable of modules to unfreeze. Their parameters will be added to an optimizer as a new param group.optimizer (
Optimizer
) – The provided optimizer will receive new parameters and will add them to add_param_grouplr (
Optional
[float
]) – Learning rate for the new param group.initial_denom_lr (
float
) – If no lr is provided, the learning from the first param group will be used and divided by initial_denom_lr.train_bn (
bool
) – Whether to train the BatchNormalization layers.
- Return type
- Returns
None