How to train 2 different datasets sequentially

Model

model = LSTM(input_size=2, hidden_size=100, output_size=1)

Trainer

trainer = pl.Trainer(max_epochs=100)

Train Model

trainer.fit(model, train_loader1)

trainer = pl.Trainer(max_epochs=100)
trainer.fit(model, train_loader2)

Test

trainer.test(model, dataloaders=test_loader)

device = torch.device(‘cuda’ if torch.cuda.is_available() else ‘cpu’)
model.to(device)
evaluate_and_plot(model, test_loader, device)

This code allows my model to be trained twice with different datasets without any initialization during the process ?