Tschuprow’s T¶
Module Interface¶
- class torchmetrics.nominal.TschuprowsT(num_classes, bias_correction=True, nan_strategy='replace', nan_replace_value=0.0, **kwargs)[source]¶
- Compute Tschuprow’s T statistic measuring the association between two categorical (nominal) data series. \[T = \sqrt{\frac{\chi^2 / n}{\sqrt{(r - 1) * (k - 1)}}}\]- where \[\chi^2 = \sum_{i,j} \ frac{\left(n_{ij} - \frac{n_{i.} n_{.j}}{n}\right)^2}{\frac{n_{i.} n_{.j}}{n}}\]- where \(n_{ij}\) denotes the number of times the values \((A_i, B_j)\) are observed with \(A_i, B_j\) represent frequencies of values in - predsand- target, respectively. Tschuprow’s T is a symmetric coefficient, i.e. \(T(preds, target) = T(target, preds)\), so order of input arguments does not matter. The output values lies in [0, 1] with 1 meaning the perfect association.- As input to - forwardand- updatethe metric accepts the following input:- preds(- Tensor): Either 1D or 2D tensor of categorical (nominal) data from the first data series with shape- (batch_size,)or- (batch_size, num_classes), respectively.
- target(- Tensor): Either 1D or 2D tensor of categorical (nominal) data from the second data series with shape- (batch_size,)or- (batch_size, num_classes), respectively.
 - As output of - forwardand- computethe metric returns the following output:- tschuprows_t(- Tensor): Scalar tensor containing the Tschuprow’s T statistic.
 - Parameters:
- num_classes¶ ( - int) – Integer specifying the number of classes
- bias_correction¶ ( - bool) – Indication of whether to use bias correction.
- nan_strategy¶ ( - Literal[- 'replace',- 'drop']) – Indication of whether to replace or drop- NaNvalues
- nan_replace_value¶ ( - Optional[- float]) – Value to replace- NaN``s when ``nan_strategy = 'replace'
- kwargs¶ ( - Any) – Additional keyword arguments, see Advanced metric settings for more info.
 
- Raises:
- ValueError – If nan_strategy is not one of ‘replace’ and ‘drop’ 
- ValueError – If nan_strategy is equal to ‘replace’ and nan_replace_value is not an int or float 
 
 - Example: - >>> from torch import randint >>> from torchmetrics.nominal import TschuprowsT >>> preds = randint(0, 4, (100,)) >>> target = (preds + torch.randn(100)).round().clamp(0, 4) >>> tschuprows_t = TschuprowsT(num_classes=5) >>> tschuprows_t(preds, target) tensor(0.4930) - plot(val=None, ax=None)[source]¶
- Plot a single or multiple values from the metric. - Parameters:
- val¶ ( - Union[- Tensor,- Sequence[- Tensor],- None]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.
- ax¶ ( - Optional[- Axes]) – An matplotlib axis object. If provided will add plot to that axis
 
- Return type:
- Returns:
- Figure and Axes object 
- Raises:
- ModuleNotFoundError – If matplotlib is not installed 
 - >>> # Example plotting a single value >>> import torch >>> from torchmetrics.nominal import TschuprowsT >>> metric = TschuprowsT(num_classes=5) >>> metric.update(torch.randint(0, 4, (100,)), torch.randint(0, 4, (100,))) >>> fig_, ax_ = metric.plot()   - >>> # Example plotting multiple values >>> import torch >>> from torchmetrics.nominal import TschuprowsT >>> metric = TschuprowsT(num_classes=5) >>> values = [ ] >>> for _ in range(10): ... values.append(metric(torch.randint(0, 4, (100,)), torch.randint(0, 4, (100,)))) >>> fig_, ax_ = metric.plot(values)   
 
Functional Interface¶
- torchmetrics.functional.nominal.tschuprows_t(preds, target, bias_correction=True, nan_strategy='replace', nan_replace_value=0.0)[source]¶
- Compute Tschuprow’s T statistic measuring the association between two categorical (nominal) data series. \[T = \sqrt{\frac{\chi^2 / n}{\sqrt{(r - 1) * (k - 1)}}}\]- where \[\chi^2 = \sum_{i,j} \ frac{\left(n_{ij} - \frac{n_{i.} n_{.j}}{n}\right)^2}{\frac{n_{i.} n_{.j}}{n}}\]- where \(n_{ij}\) denotes the number of times the values \((A_i, B_j)\) are observed with \(A_i, B_j\) represent frequencies of values in - predsand- target, respectively.- Tschuprow’s T is a symmetric coefficient, i.e. \(T(preds, target) = T(target, preds)\). - The output values lies in [0, 1] with 1 meaning the perfect association. - Parameters:
- 1D or 2D tensor of categorical (nominal) data: - 1D shape: (batch_size,) 
- 2D shape: (batch_size, num_classes) 
 
- 1D or 2D tensor of categorical (nominal) data: - 1D shape: (batch_size,) 
- 2D shape: (batch_size, num_classes) 
 
- bias_correction¶ ( - bool) – Indication of whether to use bias correction.
- nan_strategy¶ ( - Literal[- 'replace',- 'drop']) – Indication of whether to replace or drop- NaNvalues
- nan_replace_value¶ ( - Optional[- float]) – Value to replace- NaN``s when ``nan_strategy = 'replace'
 
- Return type:
- Returns:
- Tschuprow’s T statistic 
 - Example - >>> from torch import randint, round >>> from torchmetrics.functional.nominal import tschuprows_t >>> preds = randint(0, 4, (100,)) >>> target = round(preds + torch.randn(100)).clamp(0, 4) >>> tschuprows_t(preds, target) tensor(0.4930) 
tschuprows_t_matrix¶
- torchmetrics.functional.nominal.tschuprows_t_matrix(matrix, bias_correction=True, nan_strategy='replace', nan_replace_value=0.0)[source]¶
- Compute Tschuprow’s T statistic between a set of multiple variables. - This can serve as a convenient tool to compute Tschuprow’s T statistic for analyses of correlation between categorical variables in your dataset. - Parameters:
- A tensor of categorical (nominal) data, where: - rows represent a number of data points 
- columns represent a number of categorical (nominal) features 
 
- bias_correction¶ ( - bool) – Indication of whether to use bias correction.
- nan_strategy¶ ( - Literal[- 'replace',- 'drop']) – Indication of whether to replace or drop- NaNvalues
- nan_replace_value¶ ( - Optional[- float]) – Value to replace- NaN``s when ``nan_strategy = 'replace'
 
- Return type:
- Returns:
- Tschuprow’s T statistic for a dataset of categorical variables 
 - Example - >>> from torch import randint >>> from torchmetrics.functional.nominal import tschuprows_t_matrix >>> matrix = randint(0, 4, (200, 5)) >>> tschuprows_t_matrix(matrix) tensor([[1.0000, 0.0637, 0.0000, 0.0542, 0.1337], [0.0637, 1.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 1.0000, 0.0000, 0.0649], [0.0542, 0.0000, 0.0000, 1.0000, 0.1100], [0.1337, 0.0000, 0.0649, 0.1100, 1.0000]])