from torch import randn, randint from torchmetrics.classification import MulticlassCalibrationError metric = MulticlassCalibrationError(num_classes=3, n_bins=3, norm='l1') values = [] for _ in range(20): values.append(metric(randn(20,3).softmax(dim=-1), randint(3, (20,)))) fig_, ax_ = metric.plot(values)