import torch from torchmetrics.image import ErrorRelativeGlobalDimensionlessSynthesis preds = torch.rand([16, 1, 16, 16], generator=torch.manual_seed(42)) target = preds * 0.75 metric = ErrorRelativeGlobalDimensionlessSynthesis() values = [ ] for _ in range(10): values.append(metric(preds, target)) fig_, ax_ = metric.plot(values)